日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax-(1+a2)x2,其中a>0,區間I={x|f(x)>0}.
(1)求I的長度(注:區間(α,β)的長度定義為β-α);
(2)給定常數k∈(0,1),當1-k≤a≤1+k時,求I的長度的最小值.
(1)(2)
(1)令f(x)=x[a-(1+a2)x]=0,
解得x1=0,x2,∴I=,∴I的長度為x2-x1.
(2)k∈(0,1),則0<1-k≤a≤1+k<2.
由(1)知I的長度為,設g(a)=,令g′(a)=>0,則0<a<1.
故g(a)關于a在[1-k,1)上單調遞增,在(1,1+k]上單調遞減.
g(1-k)=,g(1+k)=
故g(a)min,即I的長度的最小值為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

求二次函數f(x)=x2-4x-1在區間[t,t+2]上的最小值g(t),其中t∈R.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知減函數是定義在上的奇函數,則不等式的解集為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在R上的函數f(x)滿足f(x+y)=f(x)+f(y),當x<0時,f(x)>0,則函數f(x)在[a,b]上有(  )
A.最小值f(a)B.最大值f(b)
C.最小值f(b)D.最大值f()

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

規定表示不超過的最大整數,例如:[3.1]=3,[2.6]=3,[2]=2;若是函數導函數,設,則函數的值域是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對函數f(x)=xsin x,現有下列命題:①函數f(x)是偶函數;②函數f(x)的最小正周期是2π;③點(π,0)是函數f(x)的圖象的一個對稱中心;④函數f(x)在區間上單調遞增,在區間上單調遞減.其中是真命題的是________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知a,b,c∈R,函數f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則  (  ).
A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的圖象在y軸右側的第一個最高點的橫坐標為2.
(1)求函數f(x)的最小正周期;
(2)若f(x)在區間[6,16]上的最大值為4,求a的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知二次函數,若在區間[]上不單調,則的取值范圍是 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 男人操女人bb视频 | jizz国产免费 | 一本大道综合伊人精品热热 | 成人精品鲁一区一区二区 | 欧美成人免费 | 亚洲一区 中文字幕 | 欧美日韩亚洲一区 | 久久精品视频网 | 中文字幕2021 | 四虎成人精品 | 日韩视频免费看 | 亚洲美女视频在线观看 | 日韩中文视频 | 欧美午夜精品久久久久免费视 | www.成人.com| 丰满少妇理论片 | 亚洲精品免费在线观看 | 国产999精品久久久久久 | 中文字幕一级 | 欧美精品久久久久久久久 | 亚洲欧洲中文日韩 | 伊人久操| 一区二区三区免费av | 国产成人网 | 欧美日韩精品免费观看 | 亚洲免费观看视频 | 在线精品观看 | 欧美午夜视频在线观看 | 欧美日韩综合一区 | 毛片免费观看视频 | 羞羞在线观看视频免费观看hd | 国产午夜精品美女视频明星a级 | 中文字幕免费在线观看视频 | 日韩视频中文字幕在线观看 | 天天综合网91 | 精品一级 | 欧美视频中文字幕 | 一区二区三区免费看 | 免费黄色小视频 | 逼逼av| 成人在线网站 |