【題目】已知定點,動點
與
、
兩點連線的斜率之積為
.
(1)求點的軌跡
的方程;
(2)已知點是軌跡
上的動點,點
在直線
上,且滿足
(其中
為坐標原點),求
面積的最小值.
科目:高中數學 來源: 題型:
【題目】設數列的前n項和為
,已知
,
,
.
(1)證明:為等比數列,求出
的通項公式;
(2)若,求
的前n項和
,并判斷是否存在正整數n使得
成立?若存在求出所有n值;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】九章算術
給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現代語言描述:在羨除
中,
,
,
,
,兩條平行線
與
間的距離為h,直線
到平面
的距離為
,則該羨除的體積為
已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求直線和圓
的普通方程;
(2)已知直線上一點
,若直線
與圓
交于不同兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.
(1)當時,求某個時間段需要檢查污染源處理系統的概率;
(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com