【題目】為調查某地區老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區調查了500位老年人,結果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認為該地區的老年人是否需要志愿者提供幫助與性別有關?
附:,其中
.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數方程為 (α為參數)
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin(
﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,底面
為正三角形,
底面
,且
,
是
的中點.
(1)求證: 平面
;
(2)求證:平面平面
;
(3)在側棱上是否存在一點
,使得三棱錐
的體積是
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的中心在坐標原點,焦點在
軸上,離心率
,虛軸長為2.
(1)求雙曲線的標準方程;
(2)若直線與雙曲線
相交于
兩點,(
均異于左、右頂點),且以
為直徑的圓過雙曲線
的左頂點
,求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業的計劃.年某企業計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本
萬元,每生產
(百輛),需另投入成本
萬元,且
.由市場調研知,每輛車售價
萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關于年產量
(百輛)的函數關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知標有1~20號的小球20個,若我們的目的是估計總體號碼的平均值,即20個小球號碼的平均值.試驗者從中抽取4個小球,以這4個小球號碼的平均值估計總體號碼的平均值,按下面方法抽樣(按小號到大號排序):
(1)以編號2為起點,系統抽樣抽取4個球,則這4個球的編號的平均值為____.
(2)以編號3為起點,系統抽樣抽取4個球,則這4個球的編號的平均值為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,記f(x)的最大值為A.
(1)求f′(x);
(2)求A;
(3)證明:|f′(x)|≤2A.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com