分析 a>0,b>0,且4a+b-ab=0,可得$\frac{4}{b}+\frac{1}{a}$=1,利用“乘1法”與基本不等式的性質即可得出.
解答 解:∵a>0,b>0,且4a+b-ab=0,
∴$\frac{4}{b}+\frac{1}{a}$=1,
則 a+b=(a+b)$(\frac{4}{b}+\frac{1}{a})$=5+$\frac{4a}{b}+\frac{b}{a}$≥5+2$\sqrt{\frac{4a}{b}•\frac{b}{a}}$=9,當且僅當b=2a=6時取等號.
故答案為:9.
點評 本題考查了“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{-2\sqrt{3}+\sqrt{5}}{6}$ | B. | $\frac{2\sqrt{3}+\sqrt{5}}{6}$ | C. | $\frac{2\sqrt{3}-\sqrt{5}}{6}$ | D. | $\frac{-2\sqrt{3}-\sqrt{5}}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{20}{3}$ | B. | 8 | C. | $\frac{14}{3}$ | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{\frac{81}{4}}$+$\frac{{y}^{2}}{\frac{45}{4}}$=1 | B. | $\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | CD=2AB | B. | CD=AB | C. | AB=2CD | D. | 無法確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ②④ | B. | ①③④ | C. | ①④ | D. | ③④ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com