【題目】已知n為正整數,在二項式( +2x)n的展開式中,若前三項的二項式系數的和等于79.
(1)求n的值;
(2)判斷展開式中第幾項的系數最大?
科目:高中數學 來源: 題型:
【題目】某鮮奶店每天以每瓶3元的價格從牧場購進若干瓶鮮牛奶,然后以每瓶7元的價格出售.如果當天賣不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購進30瓶鮮牛奶,求當天的利潤(單位:元)關于當天需求量
(單位:瓶,
)的函數解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數為5);
(i)若該鮮奶店一天購進30瓶鮮牛奶,求這100天的日利潤(單位:元)的平均數;
(ii) 若該鮮奶店一天購進30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于100元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
是奇函數.
(1)判斷函數的奇偶性,并求實數
的值;
(2)若對任意的,不等式
恒成立,求實數
的取值范圍;
(3)設,若存在
,使不等式
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區中抽取7個工廠進行調查,已知A,B,C區中分別有18,27,18個工廠
(Ⅰ)求從A,B,C區中分別抽取的工廠個數;
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調查結果的對比,求這2個工廠中至少有1個來自A區的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數,滿足
.
()求函數
的解析式.
()若函數
,
,是否存在實數
使得
的最小值為
?
若存在,求出的值;若不存在,說明理由.
()若函數
,是否存在實數
,
,使函數
在
上的值域為
?若存在,求出實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數,且滿足a+b+c=m,求證: +
+
≥3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數,根據此數據作出了頻數與頻率的統計表和頻率分布直方圖.
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區服務的次數在區間[10,15)內的人數;
(3)估計這次學生參加社區服務人數的眾數、中位數以及平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形中,
,
與
交于
點,現將
沿
折起得到三棱錐
,
,
分別是
,
的中點.
(1)求證: ;
(2)若三棱錐的最大體積為
,當三棱錐
的體積為
,且
為銳角時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點,且在x=±1處的切線斜率均為﹣1,給出以下結論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點有且僅有一個;
③f(x)的最大值與最小值之和等于0.
其中正確的結論有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com