日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

3.函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)討論f(x)單調(diào)性;
(2)若f(x)恰有兩個零點(diǎn),求a的范圍.

分析 (1)求導(dǎo)函數(shù),求出函數(shù)的零點(diǎn),再進(jìn)行分類討論,從而可確定函數(shù)y=f(x)的單調(diào)性與單調(diào)區(qū)間.
(2)由(1)的結(jié)論,結(jié)合根的存在性原理,即可求出a的取值范圍.

解答 解:(1)由題意得,f′(x)=$\frac{a}{x}$-(1+a)+x=$\frac{(x-1)(x-a)}{x}$(x>0),
由f′(x)=0,得x1=1,x2=a
①當(dāng)0<a<1時,令f′(x)>0,又x>0,可得0<x<a或x>1;
令f′(x)<0,x>0,可得a<x<1,
∴函數(shù)f(x)的單調(diào)增區(qū)間是(0,a)和(1,+∞),單調(diào)減區(qū)間是(a,1);
②當(dāng)a=1時,f′(x)=$\frac{(x-1)^{2}}{x}$≥0,當(dāng)且僅當(dāng)x=1時,f′(x)=0,
所以函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)增函數(shù);
③當(dāng)a>1時,令f′(x)>0,又x>0,可得0<x<1或x>a;
令f′(x)<0,x>0,可得1<x<a
∴函數(shù)f(x)的單調(diào)增區(qū)間是(0,1)和(a,+∞),單調(diào)減區(qū)間是(1,a);
④a≤0時,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)遞減,在(1,+∞)遞增,
(2)由(1),當(dāng)a=1時,顯然不成立,
當(dāng)a>1時,由于極大值f(a)=-a-$\frac{1}{2}$<0,∴也不成立,
當(dāng)0<a<1時,極大值f(a)=-$\frac{1}{2}$a2-a+alna<0,也不成立,
當(dāng)a≤0時,f(x)在x=1處取得極小值,
又當(dāng)x→0時,或x→+∞時,都有g(shù)(x)→+∞,
∴f(1)=-a-$\frac{1}{2}$<0,解得-$\frac{1}{2}$<a<0,
綜上所述a的取值范圍為(-$\frac{1}{2}$,0)

點(diǎn)評 本題重點(diǎn)考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性,及根的存在性原理的運(yùn)用,利用導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線l:y=kx+1,拋物線C:y2=4x,直線l與拋物線C只有一個公共點(diǎn),則k=0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“x<2”是“x2<4”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將一根繩子對折,然后用剪刀在對折過的繩子上任意一處剪斷,則得到的三條繩子的長度可以作為三角形的三邊形的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等比數(shù)列{an}中,a1=1,a10=3,則a2a3…a8a9等于( 。
A.243B.$27\root{5}{27}$C.$\sqrt{3}$D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sin(2x+$\frac{π}{3}$)=a(|a|≤1),則cos($\frac{π}{6}$-2x)的值是( 。
A.-aB.aC.|a|D.±a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知下列命題:
①“M>N”是“($\frac{2}{3}$)M<($\frac{2}{3}$)N”的充要條件.
②若函數(shù)y=f(x+1)為偶函數(shù),則y=f(x)的圖象關(guān)于x=1對稱;
③命題p:“?x∈R,x2-2≥0”的否定形式為非p:“?x∈R,x2-2<0”;
④命題“若x≠y,則sin x≠sin y”的逆否命題為真命題
其中正確的命題序號是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.空間四邊形ABCD中,E、F分別為AC、BD中點(diǎn),若CD=2AB=2,EF⊥AB,則EF與CD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: www.欧美| 亚洲第一色 | 日韩精品在线一区 | 欧美日韩高清在线观看 | 久久国产精品久久精品 | 精品国产依人香蕉在线精品 | 91性高湖久久久久久久久_久久99 | 国产成人在线视频 | 日韩精品一区二区三区视频播放 | 欧美日韩电影一区 | 欧美一及黄色片 | 国产欧美精品一区二区色综合 | 日韩久久精品 | 日韩av一区二区在线 | 男男高h在线观看 | 欧美精品成人一区二区三区四区 | 美女福利视频网站 | 久久精品欧美一区二区三区不卡 | 亚洲综合精品 | 国产成人涩涩涩视频在线观看 | www久久久| 黄色毛片一级 | 国产小视频免费在线观看 | 成人av免费观看 | www.午夜视频 | 一区二区三区不卡视频 | 成人国产免费视频 | 久久久精品日韩 | 亚洲视频中文字幕 | 久久国产精品免费视频 | 久久久91| 国产精品一区二区三区免费 | 精品免费国产一区二区三区 | 色5月婷婷丁香六月 | 色综合天天天天做夜夜夜夜做 | 男女精品视频 | 99久久久国产精品免费蜜臀 | 一级视频在线观看 | 精品国产乱码久久久久久1区2区 | a中文在线视频 | 欧美在线观看一区 |