試題分析:(I)首先結合條件憑借自己的空間想象力判斷.在本題中,PC=PD,則∠PCD=∠PDC不為直角,由此可知,直線CD與平面PAD不可能垂直.(II)證面面垂直,首先考慮證哪條線垂直哪個面.結合題設PA=PB取AB的中點E ,則PE⊥AB.再結合結論可知必有PE⊥平面ABCD,所以我們就考慮證明PE⊥平面ABCD.
(III)取AB、CD的中點有E、F,連結PE,PF,EF,則易得∠PFE即為二面角P-CD-A的平面角,且三角形PEF是一個直角三角形. 利用題設找到邊與邊的關系,在三角形PEF中即可求得∠PFE的大小.
試題解析:(I)不垂直
假設直線CD與平面PAD垂直,則CD⊥PD。
而在△PCD中,由PC=PD得∠PCD=∠PDC
∴∠PDC<90
0,這與CD⊥PD矛盾,
因此, 直線CD與平面PAD不垂直。
(II)取AB、CD的中點有E、F,連結PE,PF,EF,
由PA=PB,PC="PD," 得 PE⊥AB,PF⊥CD.
∵EF為直角梯形的中位線 ∴EF⊥CD、
又PF

EF=F ∴CD⊥平面PEF
由PE

平面PEF ∴CD⊥PE
又梯形的兩腰AB與CD必相交,∴PE⊥平面ABCD
又PE

平面PAB ∴平面PAB⊥平面ABCD
(III)∠PFE即為二面角P-CD-A的平面角
作EG⊥BC于G,連PG。由三垂線定理得BC⊥PG,則∠PGE為二面角P-BC-A的平面角即∠PGE=60
0由已知得EF=

(AD+BC)=

,EG=CF=

CD,∴EF=EG
而

∴∠PFE=∠PGE=60
0即二面角P-CD-A的大小為60
0。