【題目】設二次函數f(x)滿足:對任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若關于x的方程f(x)=a有兩個實數根x1 , x2 , 且滿足:﹣1<x1<2<x2 , 求實數a的取值范圍.
【答案】
(1)解:設f(x)=ax2+bx+c(a≠0),
則f(x+1)+f(x)=2ax2+(2a+2b)x+a+b+2c=2x2﹣2x﹣3
所以 ,解得:a=1,b=﹣2,c=﹣1,
從而f(x)=x2﹣2x﹣1
(2)解:令g(x)=f(x)﹣a=x2﹣2x﹣1﹣a=0
由于﹣1<x1<2<x2,所以
解得﹣1<a<2
【解析】(1)設出二次函數,利用函數的解析式,化簡表達式,通過比較系數,求出函數的解析式.(2)利用二次函數根與系數的關系,列出不等式,求解a的范圍即可.
【考點精析】認真審題,首先需要了解二次函數的性質(當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減).
科目:高中數學 來源: 題型:
【題目】某單位建造一間地面面積為12m2的背面靠墻的矩形小房子,由于地理位置的限制,房子側面的長度x不得超過am.房屋正面的造價為400元/m2 , 房屋側面的造價為150元/m2 , 屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.當側面的長度為多少時,總造價最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100 個網箱,測量各箱水產品的產量(單位:kg).其頻率分布直方圖如下:
(1)設兩種養殖方法的箱產量相互獨立,記A表示事件:“舊養殖法的箱產量低于50kg,新養殖法的箱產量不低于50kg”,估計A的概率;
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量<50kg | 箱產量≥50kg | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,求新養殖法箱產量的中位數的估計值(精確到0.01).
附:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2x+ )+sin(2x﹣
)+2cos2x﹣1,x∈R.
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在區間[ ]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1= 且an+1=an﹣an2(n∈N*)
(1)證明:1< ≤2(n∈N*);
(2)設數列{an2}的前n項和為Sn , 證明 (n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a為實數,函數f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).
(1)若f(0)≤1,求a的取值范圍;
(2)求f(x)在R上的單調區間(無需使用定義嚴格證明,但必須有一定的推理過程);
(3)當a>2時,求函數g(x)=f(x)+|x|在R上的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,若對于在定義域內存在實數
滿足
,則稱函數
為“局部奇函數”.若函數
是定義在
上的“局部奇函數”,則實數
的取值范圍是( 。
A. [1﹣,1+
) B. [﹣1,2] C. [﹣2
,2
] D. [﹣2
,1﹣
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量(單位:克),重量分組區間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖).
(1)求的值;
(2)從盒子中隨機抽取3個小球,其中重量在[5,15]內的小球個數為X,求X的分布列和數學期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com