日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
14.四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC與BD交于點O,點G為BD上一點,BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow{b}$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}表示向量$\overrightarrow{PG}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.

分析 利用向量的三角形法則、平行四邊形法則即可得出.

解答 解:$\overrightarrow{PG}$=$\overrightarrow{PB}+\overrightarrow{BG}$=$\overrightarrow{PB}+\frac{2}{3}\overrightarrow{BD}$=$\overrightarrow{PB}+\frac{2}{3}$$(\overrightarrow{BA}+\overrightarrow{BC})$=$\overrightarrow{PB}$+$\frac{2}{3}(\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}-\overrightarrow{PB})$=$\frac{2}{3}$$\overrightarrow{PA}-\frac{1}{3}\overrightarrow{PB}$+$\frac{2}{3}\overrightarrow{PC}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.
故答案為:$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+\frac{2}{3}\overrightarrow{c}$.

點評 本題考查了向量的三角形法則、平行四邊形法則及其運算性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.下列判斷錯誤的是(  )
A.“am2<bm2”是“a<b”的充分不必要條件
B.命題“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$”
C.若p,q均為假命題,則p∧q為假命題
D.若ζ~B(4,0.25),則Dξ=1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1,F2,焦距為2c,直線$y=\frac{{\sqrt{3}}}{3}(x+c)$與雙曲線的一個交點P滿足∠PF2F1=2∠PF1F2,則雙曲線的離心率e為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}+1$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.一直線l過直線l1:3x-y=3和直線l2:x-2y=2的交點P,且與直線l3:x-y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為$\sqrt{2}$的圓C相切,求圓C的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知拋物線的方程為y=ax2,且經過點(1,4),則焦點坐標為(0,$\frac{1}{16}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.過點C(0,$\sqrt{2}$)的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓與x軸交于兩點A(a,0),B(-a,0),過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與BD交于點Q.
(1)求橢圓的方程;
(2)當直線l過橢圓右焦點時,求線段CD的長;
(3)當點P異于點B時,求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知命題p:x2+2mx+(4m-3)>0的解集為R,命題q:m+$\frac{1}{m-2}$的最小值為4,如果p與q只有一個真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,在四棱錐A-BCDE中,底面BCDE是∠BCD=90°的梯形,CD∥BE,AB⊥底面BCDE,BE=4AB=2BC=2CD,點F為AE的中點.
(1)求證:FD∥平面ABC;
(2)求異面直線AC與DE所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.a=log20.7,b=($\frac{1}{5}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{2}$)-3,則a,b,c的大小關系是(  )
A.c>b>aB.b>c>aC.c>a>bD.a>b>c

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久综合 | 日韩欧美国产精品综合嫩v 狠狠综合久久 | 在线观看亚洲精品视频 | 一区二区三区久久 | 亚洲精品自拍视频 | 日本高清视频在线播放 | 国产xxx护士爽免费看 | 国产精品二区三区 | 国产91富婆养生按摩会所 | 国产在线免费 | www.欧美.com| 亚洲精选一区 | 99福利视频 | 欧美日本国产 | 国产亚洲一区二区精品 | 亚洲激情第一页 | 国产一区二区在线免费观看 | av在线播放免费 | 在线观看v片| 日韩精品 电影一区 亚洲 | 羞羞视频免费观看 | 亚洲精品一区二区三区四区高清 | 成人黄色在线视频 | 午夜精品久久久久久久久久久久久 | 操操网站 | 成人不卡视频 | 国产香蕉97碰碰久久人人九色 | 国产成人精品网站 | 91精品国产高清一区二区三区 | 国产中文视频 | 丝袜+亚洲+另类+欧美+变态 | 久久草视频 | 涩综合| 久久精品| 久久99视频| 欧美一级在线观看 | 久久亚洲一区二区三区四区 | 羞羞视频官网 | 欧美精品亚洲精品 | 爱爱视频在线免费观看 | 国产精品久久久久久久久久久久冷 |