已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
(1);(2)直線l不存在,理由詳見解析
解析試題分析:(1)設出弦的兩端點,代入雙曲線方程,作差即可得到弦所在直線的斜率,再利用點斜式求直線方程。(2)同(1)中方法可求得弦所在直線方程,代入雙曲線,消掉y(或x)整理出關于x的一元二次方程,看判別式。若判別式大于等于0,則所求直線存在,否則不存在。
試題解析:(1)設弦的兩端點為,因為A(2,1)為中點,所以
。因為
在雙曲線上所以
,兩式相減得
,所以
,所以
,
所以所求弦所在直線方程為,即
。
將直線方程代入雙曲線方程,整理成關于x的一元二次方程,經檢驗
(2)假設直線l存在,由(1)中方法可求得直線方程為,聯立方程
,消去y得
,因為
,因此直線與雙曲線無交點,所以直線l不存在。
考點:點差法求直線斜率問題,
科目:高中數學 來源: 題型:解答題
如圖所示,已知橢圓的兩個焦點分別為
、
,且
到直線
的距離等于橢圓的短軸長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為
(
),且經過
、
,
是橢圓
上的動點且在圓
外,過
作圓
的切線,切點為
,當
的最大值為
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點,
,直線AG,BG相交于點G,且它們的斜率之積是
.
(Ⅰ)求點G的軌跡的方程;
(Ⅱ)圓上有一個動點P,且P在x軸的上方,點
,直線PA交(Ⅰ)中的軌跡
于D,連接PB,CD.設直線PB,CD的斜率存在且分別為
,
,若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓:
的離心率為
,點
(
,0),
(0,
)原點
到直線
的距離為
。
(1) 求橢圓的方程;
(2) 設點為(
,0),點
在橢圓
上(與
、
均不重合),點
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在x軸上,離心率為,且經過點
,直線
交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得
始終平分
?若存在,求出
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構成等差數列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線
上的兩點,且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準線的距離為
.
(1)求拋物線的方程;
(2)當的角平分線垂直
軸時,求直線
的斜率;
(3)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com