如圖,已知拋物線:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準線的距離為
.
(1)求拋物線的方程;
(2)當的角平分線垂直
軸時,求直線
的斜率;
(3)若直線在
軸上的截距為
,求
的最小值.
(1);(2)
;(3)
.
解析試題分析:本題考查拋物線、圓的標準方程以及直線與拋物線、圓的位置關系,突出解析幾何的基本思想和方法的考查:如數形結合思想、坐標化方法等.第一問,據點到準線
的距離為
,直接列式求得
,得到拋物線的標準方程;第二問,據條件
的角平分線為
,即
軸,得
,而
,
關于
對稱,所以
,利用兩點斜率公式代入得
,所以求得
;第三問,先求直線
的方程,再求
的方程,令
,可得到
,利用函數的單調性求函數的最值.
試題解析:(1)∵點到拋物線準線的距離為
,
∴,即拋物線
的方程為
.
(2)法一:∵當的角平分線垂直
軸時,點
,∴
,
設,
,
∴, ∴
,
∴.
.
法二:∵當的角平分線垂直
軸時,點
,∴
,可得
,
,∴直線
的方程為
,
聯立方程組,得
,
∵ ∴
,
.
同理可得,
,∴
.
(3)法一:設,∵
,∴
,
可得,直線的方程為
,
同理,直線的方程為
,
∴,
,
∴直線的方程為
,
令,可得
,
∵關于
的函數在
單調遞增, ∴
.
法二:設點,
,
.
以為圓心,
為半徑的圓方程為
科目:高中數學 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為直角坐標系
的原點,焦點在
軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓
的動點,
為過
且垂直于
軸的直線上的點,
(
為橢圓的離心率),求點
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓的方程;
(2)若存在直線,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A(-5,0),B(5,0),動點P滿足||,
|
|,8成等差數列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足||·|
|=
,則稱點M為點P對應的“比例點”.問:對任意一個確定的點P,它總能對應幾個“比例點”?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
(
)的直線
與橢圓
相交于
兩點,直線
、
分別交直線
于
、
兩點,線段
的中點為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com