【題目】已知△ABC的兩條高線所在直線方程為2x-3y+1=0和x+y=0,頂點A(1,2).
求(1)BC邊所在的直線方程;
(2)△ABC的面積.
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.若a,b是兩條直線,且a∥b,那么a平行于經過b的任何平面
B.若直線a和平面α滿足a∥α,那么a與α內的任何直線平行
C.平行于同一條直線的兩個平面平行
D.若直線a,b和平面α滿足a∥b,a∥α,b不在平面α內,則b∥α
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
和
,點
在橢圓上,且
的面積為
.
(1)求該橢圓的標準方程;
(2)過該橢圓的左頂點作兩條相互垂直的直線分別與橢圓相交于不同于點
的兩點
、
,證明:動直線
恒過
軸上一定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列的首項是1,公比為3,等差數列
的首項是
,公差為1,把
中的各項按如下規則依次插入到
的每相鄰兩項之間,構成新數列
:
,
,
,
,
,
,
,
,
,
,…,即在
和
兩項之間依次插入
中
個項,則
__________.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面幾何中,研究三角形內任意一點與三邊的關系時,有真命題:邊長為的正三角形內任意一點到各邊的距離之和是定值
。類比上述命題,請寫出關于正四面體內任意一點與四個面的關系的一個真命題,并給出證明。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的
區開設分店,為了確定在該區開設分店的個數,該公司對該市已開設分店聽其他區的數據作了初步處理后得到下列表格.記
表示在各區開設分店的個數,
表示這個
個分店的年收入之和.
| 2 | 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經過初步判斷,可用線性回歸模型擬合與
的關系,求
關于
的線性回歸方程
;
(2)假設該公司在區獲得的總年利潤
(單位:百萬元)與
之間的關系為
,請結合(1)中的線性回歸方程,估算該公司應在
區開設多少個分店時,才能使
區平均每個店的年利潤最大?
(參考公式: ,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com