日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.設數列{an}的前n項和為Sn,且(Sn-1)2=anSn(n∈N*).
(1)求S1,S2,S3的值;
(2)求出Sn及數列{an}的通項公式;
(3)設bn=(-1)n-1(n+1)2anan+1(n∈N*),求數列{bn}的前n項和為Tn

分析 (1)由(Sn-1)2=anSn(n∈N*),分別取n=1,2,3即可得出.
(2)由(1)可得:n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).化為:Sn=$\frac{1}{2-{S}_{n-1}}$.猜想Sn=$\frac{n}{n+1}$.代入驗證即可得出.
(3)bn=(-1)n-1(n+1)2anan+1(n∈N*)=(-1)n-1$\frac{1}{n(n+2)}$=(-1)n-1$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,對n分類討論,利用“裂項求和”方法即可得出.

解答 解:(1)∵(Sn-1)2=anSn(n∈N*),
∴n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).
∴n=1時,$({a}_{1}-1)^{2}={a}_{1}^{2}$,解得a1=$\frac{1}{2}$=S1
n=2時,$({S}_{2}-1)^{2}=({S}_{2}-\frac{1}{2}){S}_{2}$,解得S2=$\frac{2}{3}$.
同理可得:S3=$\frac{3}{4}$.
(2)由(1)可得:n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).
化為:Sn=$\frac{1}{2-{S}_{n-1}}$.(*)
猜想Sn=$\frac{n}{n+1}$.
n≥2時,代入(*),左邊=$\frac{n}{n+1}$;右邊=$\frac{1}{2-\frac{n-1}{n}}$=$\frac{n}{n+1}$,
∴左邊=右邊,猜想成立,n=1時也成立.
∴n≥2時,an=Sn-Sn-1=$\frac{n}{n+1}$-$\frac{n-1}{n}$=$\frac{1}{n(n+1)}$,n=1時也成立.
∴Sn=$\frac{n}{n+1}$,an=$\frac{1}{n(n+1)}$.
(3)bn=(-1)n-1(n+1)2anan+1(n∈N*)=(-1)n-1$\frac{1}{n(n+2)}$=(-1)n-1$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴n=2k(k∈N*)時,數列{bn}的前n項和為
Tn=$\frac{1}{2}[(1-\frac{1}{3})$-$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$-$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(1-\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{1}{4}$-$\frac{1}{2(n+1)(n+2)}$.
n=2k-1(k∈N*)時,數列{bn}的前n項和為
Tn=$\frac{1}{2}[(1-\frac{1}{3})$-$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…-$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1-\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{4}$+$\frac{1}{2(n+1)(n+2)}$.
∴Tn=$\frac{1}{4}+(-1)^{n-1}$×$\frac{1}{2(n+1)(n+2)}$.

點評 本題考查了“裂項求和法”、數列遞推關系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

19.$\overrightarrow{m}$=(sin(x-$\frac{π}{3}$),1),$\overrightarrow{n}$=(cosx,1)
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求tanx值
(2)若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,x∈[0,$\frac{π}{2}$],求f(x)的最值?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若某幾何體的三視圖如圖所示,則此幾何體的體積等于4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知F1,F2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{4}$,則雙曲線E的離心率為(  )
A.$\frac{\sqrt{15}}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=alnx+(-1)n$\frac{1}{{x}^{n}}$,其中n∈N*,a為常數.
(Ⅰ)當n=2,且a>0時,判斷函數f(x)是否存在極值,若存在,求出極值點;若不存在,說明理由;
(Ⅱ)若a=1,對任意的正整數n,當x≥1時,求證:f(x+1)≤x.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.不等式|2-x|<1的解集為(1,3).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.過橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$內一點M(l,l)的直線l交橢圓于兩點,且M為線段AB的中點,則直線l的方程為3x+4y-7=0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=$\frac{x}{x+b}$(b≠0且b是常數).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(-∞,-1)上是增函數;
(3)若函數f(x)在(1,+∞)上是減函數,求負數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.計算下列各式的值,寫出必要的計算過程.
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$       
(2)(log43+log83)(log32+log92)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 伊人激情网| 91久久久久 | 欧美日黄 | 国产一二区在线观看 | 国产无毒不卡 | 免费观看一级特黄欧美大片 | 色欧美综合 | 91精品久久久久久久久久入口 | 人人艹人人| 日韩专区一区二区三区 | 欧美三及片 | 日本黄色片免费 | 蜜臀久久精品 | 一区免费在线观看 | 免费福利小视频 | 超碰中文字幕 | 福利片免费观看 | 日本在线观看 | 男女羞羞在线观看 | 青青草免费在线 | 亚洲精品视频在线观看免费 | 亚洲男人的天堂网站 | 色欧美日韩 | 国产日韩欧美亚洲 | www在线播放| 国产成人99久久亚洲综合精品 | 一区二区三区四区日韩 | 黄网站涩免费蜜桃网站 | 黄91视频| 高清视频一区二区三区 | 日韩一区二区三区在线 | 国产伦精品一区二区三区电影 | 免费在线一区二区 | 一级在线观看 | 欧美日韩精品 | 国产成人免费视频网站高清观看视频 | 欧美激情小视频 | 日韩成人在线视频 | 密室大逃脱第六季大神版在线观看 | 亚洲欧美日韩另类精品一区二区三区 | 情趣视频在线免费观看 |