經過點且與直線
相切的動圓的圓心軌跡為
.點
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線
的距離等于
,且
的面積為20,求直線
的方程.
(1);(2)證明過程詳見解析;(3)
.
解析試題分析:本題主要考查拋物線、圓、直線的標準方程和幾何性質,考查用代數法研究圓錐曲線的性質以及數形結合思想、分類討論思想.第一問,根據圓與直線相切列出表達式;第二問,把證明角相等轉化為證明兩個斜率之間的關系;第三問,找直線上的點的坐標和直線的斜率,本問應用了數形結合思想.
試題解析:(1)設動圓圓心為,依題意得
.
整理,得,所以軌跡
的方程為
.(2分)
(2)由(1)得,即
,則
.
設點,由導數的幾何意義知,直線
的斜率為
,
由題意知點,設點
,
則,
即.
因為,
,
由于,即
,
所以.(6分)
(3)由點到
的距離等于
,可知
,
不妨設點在
上方(如圖),即
,直線
的方程為:
.
由,解得點
的坐標為
,
所以,
由(2)知,同理可得
,
所以的面積
,解得
.
當時,點
的坐標為
,
,
直線的方程為
,即
.
當時,點
的坐標為
,
,
直線的方程為
,即
. (12分)
考點:1.圓、拋物線、直線的標準方程;2.斜率公式;3.導數的幾何意義;4.三角形面積公式.
科目:高中數學 來源: 題型:解答題
已知一個圓的圓心為坐標原點,半徑為
.從這個圓上任意一點
向
軸作垂線
,
為垂足.
(Ⅰ)求線段中點
的軌跡方程;
(Ⅱ)已知直線與
的軌跡相交于
兩點,求
的面積
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在軸上,離心率
,點
在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線
交橢圓
與
、
兩點,且
、
、
成等差數列,點M(1,1),求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
拋物線M: 的準線過橢圓N:
的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于
,設點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點
.
(1)求拋物線的標準方程;
(2)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動圓C經過點,且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當△ABC的面積為
時,求直線m的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com