【題目】如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點. (Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.
【答案】解:(Ⅰ)證明:連接BD交AC于O,連接EO. 因為 E,O分別為QD和BD的中點,則EO∥QB.
又 EO平面AEC,QB平面AEC,
所以 QB∥平面AEC.
(Ⅱ)證明:因為矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,CD平面ABCD,CD⊥AD,
所以CD⊥平面ADPQ.
又AE平面ADPQ,所以CD⊥AE.
因為AD=AQ,E是QD的中點,所以AE⊥QD.
所以AE⊥平面QDC.
所以平面QDC⊥平面AEC.
(Ⅲ)解:多面體ABCEQ為四棱錐Q﹣ABCD截去三棱錐E﹣ACD所得,
所以 .
【解析】(Ⅰ)連接BD交AC于O,連接EO.證明EO∥QB,即可證明QB∥平面AEC.(Ⅱ)證明CD⊥AE,AE⊥QD.推出AE⊥平面QDC,然后證明平面QDC⊥平面AEC.(Ⅲ)通過多面體ABCEQ為四棱錐Q﹣ABCD截去三棱錐E﹣ACD所得,計算求解即可.
【考點精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】已知平面內三個向量: =(3,2),
=(﹣1,2),
=(4,1) (Ⅰ)若(
+k
)∥(2
﹣
),求實數k的值;
(Ⅱ)設 =(x,y),且滿足(
+
)⊥(
﹣
),|
﹣
|=
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求的單調區間;
(2)設曲線與
軸正半軸的交點為
,曲線在點
處的切線方程為
,
求證:對于任意的正實數,都有
;
(3)若方程為實數)有兩個正實數根
且
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且a2=3,S5=25.
(1)求數列{an}的通項公式an;
(2)設數列{ }的前n項和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk=
成立,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數)
(Ⅰ)寫出曲線C的參數方程,直線l的普通方程;
(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC—A1B1C1的側面AA1B1B為正方形,側面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,其離心率為
.
(1)求橢圓的方程;
(2)直線與
相交于
兩點,在
軸上是否存在點
,使
為正三角形,若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解某地區觀眾對某類體育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(1)根據已知條件完成下面的2×2列聯表,并據此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
總計 |
(2)將日均收看該體育節目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2名,求至少有1名女性觀眾的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com