日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,空間四邊形ABCD中,E、F、G分別是AB、BC、CD上,且滿足AE:EB=CF:FB=2:1,CG:GD=3:1,過E、F、G的平面交AD于點H.
(1)求AH:HD;
(2)求證:EH、FG、BD三線共點.
考點:直線與平面平行的性質
專題:綜合題,空間位置關系與距離
分析:(1)證明EF∥平面ACD,可得EF∥GH.而EF∥AC,可得AC∥GH,即可求AH:HD;
(2)證明四邊形EFGH為梯形,EH∩FG=P,證明P∈BD,即可證明EH、FG、BD三線共點.
解答: (1)解:∵AE:EB=CF:FB=2:1,∴EF∥AC.
∴EF∥平面ACD.
而EF?平面EFGH,且平面EFGH∩平面ACD=GH,
∴EF∥GH.而EF∥AC,
∴AC∥GH.
∴AH:HD=CG:GD=3,即AH:HD=3:1.
(2)證明∵EF∥GH,且EF:AC=1:3,GH:AC=1:4,
∴EF≠GH,∴四邊形EFGH為梯形.
令EH∩FG=P,則P∈EH,而EH?平面ABD,
P∈FG,FG?平面BCD,平面ABD∩平面BCD=BD,
∴P∈BD.∴EH、FG、BD三線共點.
點評:本題考查直線與平面平行的判定與性質,考查三線共點,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC=3,PB=PD=3
2
,點E在PD上,且PE:ED=2:1.
(1)證明:PA⊥平面ABCD;
(2)求二面角A-CE-D的余弦值;
(3)在棱PC上是否存在一點F,使得BF∥平面AEC?如果存在,指出F的位置,如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=(
1
2
)
lgcosx
的單調遞減區間是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

直線l:y=kx+1與雙曲線C:3x2-y2=3的右支交于不同的兩點A、B.
(Ⅰ)求實數k的取值范圍;
(Ⅱ)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

直線y=
b
a
x+3與雙曲線
x2
a2
-
y2
b2
=1的交點個數是( 。
A、1B、2C、1或2D、0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點是F1(-2,0),且b2=3a2
(1)求雙曲線C的方程;
(2)設經過雙曲線右焦點的直線l的斜率為-m,當直線l與雙曲線C的右支相交于不同的兩點A、B時,求實數m的取值范圍,并證明AB的中點M在曲線(x-1)2-
y2
3
=1上.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,空間四邊形被一平面所截,截面EFGH是平行四邊形.求證:
(1)EF∥平面BCD;
(2)BC∥平面EFGH.

查看答案和解析>>

科目:高中數學 來源: 題型:

過橢圓
x2
4a2
+
y2
a2
=1(a>0)的焦點F作一直線交橢圓于P、Q兩點,若線段PF、QF的長分別是p、q,則
1
p
+
1
q
=( 。
A、
4
a
B、
1
2a
C、4a
D、2a

查看答案和解析>>

科目:高中數學 來源: 題型:

已知在三棱錐A-BCD中,CA=BD=2
2
,CD=2
3
,AD=AB=BC=2,則該棱錐的外接球半徑
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: igao视频在线 | 国产色在线 | 99婷婷| 国产亚洲视频在线观看 | 综合网av| 97精品视频| 免费在线看a| 黄色免费在线视频 | 色吧综合 | 久久久久久久网 | 久草成人 | 二区在线观看 | www.99色| 一区二区视频在线播放 | www4h| 成人性生活视频 | 日韩专区在线 | 好吊视频一区二区三区四区 | 欧美日韩国产一区二区 | 国产www在线观看 | 亚洲午夜久久 | 国产做受视频 | 国产午夜三级 | 国产精品www | 久久久久久亚洲精品 | 做爰xxxⅹ性生交 | 四虎看片 | 黄色精品网站 | 在线观看国产小视频 | 视频一区中文字幕 | 亚洲国产精品久久久 | 午夜天堂在线 | 国产福利视频 | 91久久久久国产一区二区 | 日韩一二区 | 亚洲在线观看视频 | 日韩欧美中文在线 | 国产黄色大片 | 免费亚洲视频 | 国产女人高潮视频 | 中文字幕亚洲天堂 |