已知f(x)=x3+bx2+cx+2.
(Ⅰ)若f(x)在x=1時,有極值-1,求b、c的值;
(Ⅱ)當b為非零實數時,證明f(x)的圖像不存在與直線(b2-c)x+y+1=0平行的切線;
(Ⅲ)記函數|(x)|(-1≤x≤1)的最大值為M,求證:M≥
.
(Ⅰ)∵ 由f(x)在x=1時,有極值-1得 即 當b=1,c=-5時, 當x>1時, 當- 從而符合在x=1時,f(x)有極值,∴ (Ⅱ)假設f(x)圖像在x=t處的切線與直線(b2-c)x+y+1=0平行, ∵ ∴3t2+2bt+c=c-b2,(7分) 即3t2+2bt+b2=0. ∵Δ=4(b2-3b2)=-8b2, 又∵b≠0,∴Δ<0. 從而方程3t2+2bt+b2=0無解,因此不存在t,使 (Ⅲ)證法一:∵|f'(x)|=|3(x+ ②當-3≤b≤0時,2M≥| =|3-2b+c|+|c- ③當0<b≤3時,2M≥| =| 綜上所述,M≥ 證法二: ①若|- ∴2M≥| ∴M>6,從而M≥ ②若|- (i)當c≥- (2)當c<- 綜上所述,M≥ 證法三:∵M是| ∴M≥| ∴4M≥2| |
科目:高中數學 來源:2014屆浙江省高二下學期期中考試理科數學試卷(解析版) 題型:選擇題
已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值( )
A.一定大于0 B.一定等于0 C.一定小于0 D.正負都有可能
查看答案和解析>>
科目:高中數學 來源:2012年人教A版高中數學必修1單調性與最大(小)值練習卷(二)(解析版) 題型:解答題
已知f(x)=x3+x(x∈R),
(1)判斷f(x)在(-∞,+∞)上的單調性,并證明;
(2)求證:滿足f(x)=a(a為常數)的實數x至多只有一個.
查看答案和解析>>
科目:高中數學 來源:2013屆山東省高二下學期3月月考理科數學試卷(解析版) 題型:選擇題
已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為( )
A、-1<a<2 B、-3<a<6 C、a<-1或a>2 D、a<-3或a>6
查看答案和解析>>
科目:高中數學 來源:2013屆浙江省杭州市高二第二學期3月月考理科數學試卷 題型:選擇題
已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值( )
A.一定大于0 B.一定等于0 C.一定小于0 D.正負都有可能
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com