【題目】已知函數,若存在
,使得
,則實數
的值為______.
【答案】
【解析】
函數f(x)可以看作是動點M(x,ex)與動點N(-a,-)之間距離的平方,問題轉化為求直線上的動點到曲線的最小距離,由y=ex得,y′=ex=
,曲線上點M(-1,
)到直線y=
x的距離最小,要使f(x0)≤
,則f(x0)=
,然后求解a即可.
函數f(x)=(x+a)2+(ex+)2,
函數f(x)可以看作是動點M(x,ex)與動點N(-a,-)之間距離的平方,
動點M在函數y=ex的圖象上,N在直線y=x的圖象上,
問題轉化為求直線上的動點到曲線的最小距離,
由y=ex得,y′=ex=,解得x=-1,
所以曲線上點M(-1,)到直線y=
x的距離最小,最小距離d=
,
則f(x)≥,
根據題意,要使f(x0)≤,則f(x0)=
,
此時N恰好為垂足,由KMN=-e,解得a= .
故答案為:.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數.
(Ⅰ)求橢圓的方程;
(Ⅱ)設動點,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為更好地落實農民工工資保證金制度,南方某市勞動保障部門調查了年下半年該市
名農民工(其中技術工、非技術工各
名)的月工資,得到這
名農民工月工資的中位數為
百元(假設這
名農民工的月工資均在
(百元)內)且月工資收入在
(百元)內的人數為
,并根據調查結果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,
的值;
(Ⅱ)已知這名農民工中月工資高于平均數的技術工有
名,非技術工有
名,則能否在犯錯誤的概率不超過
的前提下認為是不是技術工與月工資是否高于平均數有關系?
參考公式及數據:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在直角坐標系中,點P到兩點
,
的距離之和等于4,設點P的軌跡為
,直線
與C交于A,B兩點.
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若點A在第一象限,證明:當k>0時,恒有||>|
|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】1927年德國漢堡大學的學生考拉茲提出一個猜想:對于每一個正整數,如果它是奇數,就把它乘以3再加1,如果它是偶數,就把它除以2,這樣循環,最終結果都能得到1.如圖是為了驗證考拉茲猜想而設計的一個程序框圖,則①處應填寫的條件及輸出的結果i分別為( )
A.a是偶數?;5B.a是偶數?;6
C.a是奇數?;5D.a是奇數?;6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用長為18 cm的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓
及點
,
.
(1)若直線平行于
,與圓
相交于
,
兩點,
,求直線
的方程;
(2)在圓上是否存在點
,使得
?若存在,求點
的個數;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com