函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/e/ons7m2.png" style="vertical-align:middle;" />,若存在常數(shù)
,使得
對(duì)一切實(shí)數(shù)
均成立,則稱(chēng)
為“圓錐托底型”函數(shù).
(1)判斷函數(shù),
是否為“圓錐托底型”函數(shù)?并說(shuō)明理由.
(2)若是“圓錐托底型” 函數(shù),求出
的最大值.
(3)問(wèn)實(shí)數(shù)、
滿足什么條件,
是“圓錐托底型” 函數(shù).
(1)是,
不是,(2)
,(3)
解析試題分析:(1)新定義問(wèn)題,必須讀懂題意,嚴(yán)格按定義進(jìn)行等價(jià)轉(zhuǎn)化.本題判斷函數(shù)是否為“圓錐托底型”函數(shù),即判斷是否存在常數(shù),使得
對(duì)一切實(shí)數(shù)
均成立,若成立必須證明,否則給出反例.本題解題關(guān)鍵在于常數(shù)
的確定.
,所以可確定常數(shù)
而由
可知無(wú)論常數(shù)
為什么正數(shù),
總能取較小的數(shù)比它小,即總能舉個(gè)反例,如當(dāng)
時(shí),
就不成立.(2)本題實(shí)質(zhì)按新定義轉(zhuǎn)化為不等式恒成立問(wèn)題:存在
,使得
對(duì)于任意實(shí)數(shù)恒成立.即當(dāng)
時(shí),
,而
取得最小值2,
.(3)本題是討論滿足不等式恒成立的條件.即實(shí)數(shù)
、
滿足什么條件,存在常數(shù)
,使得
對(duì)一切實(shí)數(shù)
均成立.當(dāng)
時(shí),
,
、
無(wú)限制條件;當(dāng)
時(shí),
,需
,否則若
,則當(dāng)
時(shí),
,即
不能恒成立;若
,則
.
試題解析:(1).,即對(duì)于一切實(shí)數(shù)
使得
成立,
“圓錐托底型” 函數(shù). 2分
對(duì)于,如果存在
滿足
,而當(dāng)
時(shí),由
,
,得
,矛盾,
不是“圓錐托底型” 函數(shù). 5分
(2)是“圓錐托底型” 函數(shù),故存在
,使得
對(duì)于任意實(shí)數(shù)恒成立.
當(dāng)
時(shí),
,此時(shí)當(dāng)
時(shí),
取得最小值2,
9分
而當(dāng)時(shí),
也成立.
的最大值等于
. 10分
(
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
.
(1)若,求函數(shù)
的定義域和極值;
(2)當(dāng)時(shí),試確定函數(shù)
的零點(diǎn)個(gè)數(shù),并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:對(duì)于函數(shù),若存在非零常數(shù)
,使函數(shù)
對(duì)于定義域內(nèi)的任意實(shí)數(shù)
,都有
,則稱(chēng)函數(shù)
是廣義周期函數(shù),其中稱(chēng)
為函數(shù)
的廣義周期,
稱(chēng)為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距
的值;
(2)試求一個(gè)函數(shù),使
(
為常數(shù),
)為廣義周期函數(shù),并求出它的一個(gè)廣義周期
和周距
;
(3)設(shè)函數(shù)是周期
的周期函數(shù),當(dāng)函數(shù)
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/1/aujvk.png" style="vertical-align:middle;" />時(shí),求
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)镋,值域?yàn)镕.
(1)若E={1,2},判斷實(shí)數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實(shí)數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(xiàn)(x)=f(x)-g(x),求函數(shù)F(x)的極值點(diǎn)及相應(yīng)的極值.
(2)若對(duì)于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)在區(qū)間
上有最大值
,最小值
.
(1)求函數(shù)的解析式;
(2)設(shè).若
在
時(shí)恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若x∈時(shí),不等式f(1+xlog2a)≤f(x-2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com