日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
14.若正數x,y滿足2x+y-3=0,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為3.

分析 利用“乘1法”基本不等式的性質即可得出.

解答 解:$\frac{2}{x}+\frac{1}{y}=\frac{1}{3}(2x+y)(\frac{2}{x}+\frac{1}{y})=\frac{1}{3}(\frac{2x}{y}+\frac{2y}{x}+5)≥3$,當且僅當x=y=1時取等號.
所以$\frac{2}{x}+\frac{1}{y}$的最小值為3.
故答案為:3

點評 本題考查了“乘1法”和基本不等式的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.在下列各函數中,偶函數是(  )
A.y=x3B.y=x4C.y=$\sqrt{x}$D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.設常數a∈R,函數f(x)=|x-1|+|x2-a|,若f(2)=1,則a=4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.函數y=2x在[0,1]上的最小值為1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知命題P:函數y=lg(ax2+2x+1)的定義域為R;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數x恒成立.若P∨Q是真命題,P∧Q是假命題;求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.圓柱的側面展開圖是邊長分別為4π、1的矩形,則該圓柱的體積為4π或1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)當a=0時,判斷函數f(x)的奇偶性;
(2)若f(x)在區間[2,+∞)上是增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.二手車經銷商小王對其所經營的某一型號二手汽車的使用年數x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數246810
售價16139.574.5
(1)若這兩個變量呈線性相關關系,試求y關于x的回歸直線方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2-1.81x+16.2萬元,根據(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?
(銷售一輛該型號汽車的利潤=銷售價格-收購價格)
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产乱乱| 在线一区视频 | 免费观看一级毛片 | 成人在线观看网站 | 一区二区在线看 | av一区二区三区 | 日韩精品一区二区三区四区 | 99久久久国产精品免费蜜臀 | 亚洲国产日韩在线 | 日本在线www | 国产精品美女久久久久久久久 | 国产高清视频在线播放 | 亚洲免费精品 | 日韩精品少妇 | 成人午夜毛片 | 亚洲一区二区三区免费 | 亚洲综合精品 | 综合久久综合 | 欧美亚洲在线 | 欧美精品乱码视频一二专区 | 日韩视频在线观看 | 黄色伊人 | 中文字幕+乱码+中文乱码91 | 日韩在线一区二区 | 中文字幕不卡视频 | 国产一级免费 | 综合久久99 | 国产深夜福利 | 国产91免费| 日韩高清精品免费观看 | 99re这里只有精品6 | 亚洲精品第一页 | 中文字幕一区在线观看 | 在线日韩av | 欧美日韩国产在线 | 亚洲成人毛片 | 性做久久久久久 | 国产一区二区网站 | 免费av片| 97人人艹 | 欧美日韩亚洲一区二区三区 |