【題目】已知.
(1)若的兩根分別為某三角形兩內(nèi)角的正弦值,求m的取值范圍;
(2)問是否存在實數(shù)m,使得的兩根是直角三角形兩個銳角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為
,投中“散射”的概率為
,投中“雙耳”的概率為
,投中“依竿”的概率為
,乙的投擲水平與甲相同,且甲乙投擲相互獨立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結(jié)束時,甲獲勝的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足,且
.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列
的通項公式;
(2)求數(shù)列的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△的三個內(nèi)角
、
、
所對應的邊分別為
、
、
,復數(shù)
,
,(其中
是虛數(shù)單位),且
.
(1)求證:,并求邊長
的值;
(2)判斷△的形狀,并求當
時,角
的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前
項和為
,且
,
.
(1)若數(shù)列是等差數(shù)列,且
,求實數(shù)
的值;
(2)若數(shù)列滿足
(
),且
,求證:
是等差數(shù)列;
(3)設(shè)數(shù)列是等比數(shù)列,試探究當正實數(shù)
滿足什么條件時,數(shù)列
具有如下性質(zhì)
:對于任意的
(
),都存在
,使得
,寫出你的探究過程,并求出滿足條件的正實數(shù)
的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點M、E分別是PA、PD的中點
(1)求證:CE//平面BMD
(2)點Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當時,
,
單調(diào)遞減,且
;
當時,
,
單調(diào)遞增;且
,
所以在
上當單調(diào)遞減,在
上單調(diào)遞增,且
,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)與函數(shù)
表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)的圖象可由
的圖象向右平移1個單位得到;
④若函數(shù)的定義域為
,則函數(shù)
的定義域為
;
⑤設(shè)函數(shù)是在區(qū)間
上圖象連續(xù)的函數(shù),且
,則方程
在區(qū)間
上至少有一實根.
其中正確命題的序號是________.(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.已知隨機變量,若
.則
B.已知分類變量與
的隨機變量
的觀察值為
,則當
的值越大時,“
與
有關(guān)”的可信度越小.
C.在線性回歸模型中,計算其相關(guān)指數(shù),則可以理解為:解析變量對預報變量的貢獻率約為
D.若對于變量與
的
組統(tǒng)計數(shù)據(jù)的線性回歸模型中,相關(guān)指數(shù)
.又知殘差平方和為
.那么
.(注意:
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com