【題目】已知雙曲線的中心在原點,焦點為,
且離心率
.
(1)求雙曲線的方程;
(2)求以點為中點的弦所在的直線方程.
【答案】(1);(2)
.
【解析】
(1)根據焦點坐標求得,根據離心率及
求得
的值,進而求得雙曲線的標準方程.(2)設出
兩點的坐標,利用點差法求得弦所在直線的斜率,再由點斜式求得弦所在的直線方程.
(1) 由題可得,
,∴
,
,
所以雙曲線方程 .
(2)設弦的兩端點分別為,
,
則由點差法有: , 上下式相減有:
又因為為中點,所以
,
,
∴,所以由直線的點斜式可得
,
即直線的方程為.
經檢驗滿足題意.
【點睛】
本小題主要考查雙曲線標準方程的求法,考查利用點差法求解有關弦的中點有關的問題,屬于中檔題
【題型】解答題
【結束】
19
【題目】某投資公司計劃投資,
兩種金融產品,根據市場調查與預測,
產品的利潤
與投資金額
的函數關系為
,
產品的利潤
與投資金額
的函數關系為
.(注:利潤與投資金額單位:萬元)
(1)該公司已有100萬元資金,并全部投入,
兩種產品中,其中
萬元資金投入
產品,試把
,
兩種產品利潤總和表示為
的函數,并寫出定義域;
(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
科目:高中數學 來源: 題型:
【題目】設等差數列的前
項和為
,數列
的前
項和為
,下列說法錯誤的是( )
A. 若有最大值,則
也有最大值
B. 若有最大值,則
也有最大值
C. 若數列不單調,則數列
也不單調
D. 若數列不單調,則數列
也不單調
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=(a-x)|x|,常數a∈R,且關于x的不等式mx2+m>f[f(x)]對所有的x∈[-2,2]恒成立,則實數m的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
上一動點,
為坐標原點,則線段
中點
的軌跡方程為_______.
【答案】
【解析】
設出點的坐標,由此得到
點的坐標,將
點坐標代入橢圓方程,化簡后可得
點的軌跡方程.
設,由于
是
中點,故
,代入橢圓方程得
,化簡得
.即
點的軌跡方程為
.
【點睛】
本小題主要考查代入法求動點的軌跡方程,考查中點坐標,屬于基礎題.
【題型】填空題
【結束】
15
【題目】設是雙曲線
:
的右焦點,
是
左支上的點,已知
,則
周長的最小值是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司針對企業職工推出一款意外險產品,每年每人只要交少量保費,發生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、
、
三類工種,根據歷史數據統計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
(Ⅰ)根據規定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業共有職工20000人,從事三類工種的人數分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點P到定點的距離比它到直線
的距離小2,設動點P的軌跡為曲線C.
求曲線C的方程;
若直線
與曲線C和圓
從左至右的交點依次為A,B,C,D求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種蔬菜從1月1日起開始上市,通過市場調查,得到該蔬菜種植成本(單位:元/
)與上市時間
(單位:10天)的數據如下表:
時間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據上表數據,從下列函數:,
,
,
中(其中
),選取一個合適的函數模型描述該蔬菜種植成本
與上市時間
的變化關系;
(2)利用你選取的函數模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com