【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD=
,且OA,OB,OC兩兩垂直,則下列說法正確的是( )
A.直線OB∥平面ACD
B.球面經過點A,B,C,D四點的球的直徑是
C.直線AD與OB所成角是45°
D.二面角A﹣OC﹣D等于30°
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax,(e為自然對數的底數). (Ⅰ)討論f(x)的單調性;
(Ⅱ)若對任意實數x恒有f(x)≥0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為6的正方體ABCD﹣A1B1C1D1中,M是BC的中點,點P是面DCC1D1內的動點,且滿足∠APD=∠MPC,則三棱錐P﹣BCD的體積最大值是( )
A.36
B.12
C.24
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2001年至2013年北京市電影放映場次的情況如圖所示.下列函數模型中,最不合適近似描述這13年間電影放映場次逐年變化規律的是( )
A.y=ax2+bx+c
B.y=aex+b
C.y=aax+b
D.y=alnx+b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的正視圖1是一個底邊長為4、腰長為3的等腰三角形,圖2、圖53分別是四棱錐P﹣ABCD的側視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P﹣ABCD的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=sinx的圖象上所有的點向右平行移動 個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數解析式是( )
A.y=sin(2x )
B.y=sin(2x )
C.y=sin( x
)
D.y=sin( x
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個正三棱錐內接于同一個球.已知兩個正三棱錐的底面邊長為a,球的半徑為R.設兩個正三棱錐的側面與底面所成的角分別為α、β,則tan(α+β)的值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,﹣2),橢圓E: +
=1(a>0,b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O是坐標原點.
(1)求E的方程;
(2)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com