已知函數(shù).
(Ⅰ)若曲線在點
處的切線與直線
垂直,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于都有
成立,試求
的取值范圍;
(Ⅲ)記.當(dāng)
時,函數(shù)
在區(qū)間
上有兩個零點,求實數(shù)
的取值范圍.
(Ⅰ)的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
(Ⅱ)
(Ⅲ)
解析試題分析:(Ⅰ)定義域,
得增區(qū)間
,
得減區(qū)間
(Ⅱ)得
,
得
,所以函數(shù)
最小值為
,要滿足
恒成立,只需
(Ⅲ),
得
,減區(qū)間為
,增區(qū)間為
,函數(shù)
在區(qū)間
上有兩個零點,所以
代入解得
考點:函數(shù)導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)判定單調(diào)性求最值
點評:導(dǎo)數(shù)的幾何意義:函數(shù)在某一點處的導(dǎo)數(shù)值等于該點處的切線斜率;求函數(shù)的增減區(qū)間只需解導(dǎo)數(shù)大于零小于零的不等式;第二問中將不等會恒成立問題,第三問中將函數(shù)零點問題都可轉(zhuǎn)化為求函數(shù)的最值問題,這種轉(zhuǎn)化是函數(shù)題目常用的求解思路
科目:高中數(shù)學(xué) 來源: 題型:解答題
若存在實常數(shù)和
,使得函數(shù)
和
對其定義域上的任意實數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對數(shù)的底數(shù)).
(Ⅰ)求的極值;
(Ⅱ)函數(shù)和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)恒過定點
.
(1)求實數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移
個單位后得到函數(shù)
,設(shè)函數(shù)
的反函數(shù)為
,求
的解析式;
(3)對于定義在上的函數(shù)
,若在其定義域內(nèi),不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,g(x)=2|x|+a.
(1)當(dāng)a=0時,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是定義在區(qū)間
上的偶函數(shù),且滿足
(1)求函數(shù)的周期;
(2)已知當(dāng)時,
.求使方程
在
上有兩個不相等實根的
的取值集合M.
(3)記,
表示使方程
在
上有兩個不相等實根的
的取值集合,求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)證明:對于一切的實數(shù)x都有f(x)x;
(2)若函數(shù)存在兩個零點,求a的取值范圍
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面直角坐標(biāo)系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,
OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交
于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件
的點P的坐標(biāo);若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成
為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com