分析 求出直線AB的方程,求出對應點的坐標,結合三角形和梯形的面積,利用一元二次函數的性質進行求解即可.
解答 解:AB的方程為y=-x+1,
則△PEF是等腰直角三角形,
∵P(a,b),
∴△PEF的面積S=$\frac{1}{2}$a2,
當y=b時,x=1-b=1-2a,
即H(1-2a,2a),則PH=1-3a,PN=2a,NB=1-a,
則梯形的面積S=$\frac{(1-3a+1-a)•2a}{2}$=2a-4a2,
則陰影部分的面積S=$\frac{1}{2}$a2+2a-4a2=-$\frac{7}{2}$a2+2a=-$\frac{7}{2}$(a-$\frac{2}{7}$)2+$\frac{2}{7}$,
∵$\left\{\begin{array}{l}{0<a<1}\\{0<2a<1}\end{array}\right.$,得0<a<$\frac{1}{2}$,
∴當a=$\frac{2}{7}$時,面積取得最大值$\frac{2}{7}$,
此時P($\frac{2}{7}$,$\frac{4}{7}$).
點評 本題主要考查函數最值的求解,根據三角形和梯形的面積公式,結合一元二次函數的性質是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $k≤-4或k≥\frac{3}{4}$ | B. | $-4≤k≤\frac{3}{4}$ | C. | $k≤-\frac{3}{4}或k≥4$ | D. | $-\frac{15}{4}≤k≤4$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com