已知數列{an}是以d為公差的等差數列,數列{bn}是以q為公比的等比數列
(Ⅰ)若數列{bn}的前n項和為Sn,且a1=b1=d=2,S3<5b2+a88-180,求整數q的值.
(Ⅱ)在(Ⅰ)的條件下,試問數列{bn}中是否存在一項bk,使得b,k恰好可以表示為該數列中連續P(P∈N,P≥2)項和?請說明理由.
(Ⅲ)若b1=ar,b2=a s≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數)求證:數列{bn}中每一項都是數列{an}中的項.
科目:高中數學 來源: 題型:
cn |
2 |
1 |
c1 |
2 |
c2 |
3 |
c3 |
n |
cn |
n |
3•2n |
2 |
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com