日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
若函數f(x)的圖象是連續不斷的,根據下面的表格,可斷定f(x)的零點所在的區間為     (只填序號).
①(-∞,1];②[1,2];③[2,3];④[3,4];⑤[4,5];⑥[5,6];⑦[6,+∞)
【答案】分析:先看區間兩個端點函數值的符號,再由零點存在性定理即可解決問題.
解答:解:因為f(2)>0,f(3)<0,f(4)>0,f(5)<0,由零點存在性定理即可得③④⑤成立.
故答案為:③④⑤.
點評:本題主要考查函數的零點及函數的零點存在性定理,函數的零點的研究就可轉化為相應方程根的問題,函數與方程的思想得到了很好的體現.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=cosωx(
3
sinωx+cosωx),其中0<ω<2
.(I)若f(x)的周期為π,當-
π
6
≤x≤
π
3
時,求f(x)
的值域;(II)若函數f(x)的圖象的一條對稱軸為x=
π
3
,求ω
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
b
=(m,sin2x),
c
=(cos2x,n),x∈R,f(x)=
b
c
,若函數f(x)的圖象經過點(0,1)和(
π
4
,1)

(I)求m、n的值;
(II)求f(x)的最小正周期,并求f(x)在x∈[0,
π
4
]
上的最小值;
(III)當f(
α
2
)=
1
5
,α∈[0,π]
時,求sinα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x+2)的圖象過點P(-1,3),則若函數f(x)的圖象一定過定點
(1,3)
(1,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•佛山二模)(1)定理:若函數f(x)的圖象在區間[a,b]上連續,且在(a,b)內可導,則至少存在一點ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a)成立.應用上述定理證明:
①1-
x
y
<lny-lnx<
y
x
-1(0<x<y)

n
k-2
1
k
<lnn<
n-1
k-1
1
k
(n>1)

(2)設f(x)=xn(n∈N*).若對任意的實數x,y,f(x)-f(y)=f′(
x+y
2
)(x-y)恒成立,求n所有可能的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-x2+ax+b
(I)當a=-1時,求函數f(x)的單調區間:
(Ⅱ)若函數f(x)的圖象過點(1,1)且極小值點在區間(1,2)內,求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产日本 | 天天射一射 | 中文字幕第一 | 伦一理一级一a一片 | 亚洲天堂2014 | 亚洲精品视频在线播放 | 欧美精品久久99 | 久久久久久国产精品 | 激情做爰呻吟视频舌吻 | 国产精品99久久久久久久久 | 97久久精品人人澡人人爽 | 久久久国产精品人人片 | 亚洲激情久久 | 精品国产欧美一区二区三区成人 | 日本青青草 | 亚洲精品一二三区 | 黄色大毛片 | 日韩三级一区 | 性生活毛片 | 性大毛片视频 | 成人b站 | 天天摸天天爽 | 亚洲日本久久 | 成人欧美一区二区三区黑人免费 | 自拍偷拍综合 | 国产精品一区二区在线播放 | 国产黄色在线观看 | 中文字幕在线观看网址 | 黄色片一区二区 | 中文字幕av在线 | 日本美女一级片 | 精品欧美一区二区精品久久 | 精品热久久 | 欧美视频在线观看 | 亚洲视频精品 | a视频在线观看 | 国产在线视频网站 | 午夜小视频在线观看 | 日韩一区三区 | 国产91在线播放 | 日韩综合久久 |