【題目】某醫療器械公司在全國共有個銷售點,總公司每年會根據每個銷售點的年銷量進行評價分析.規定每個銷售點的年銷售任務為一萬四千臺器械.根據這
個銷售點的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務的銷售點有多少個?
(2)若用分層抽樣的方法從這個銷售點中抽取容量為
的樣本,求該五組
,
,
,
,
,(單位:千臺)中每組分別應抽取的銷售點數量.
(3)在(2)的條件下,從前兩組,
中的銷售點隨機選取
個,記這
個銷售點在
中的個數為
,求
的分布列和期望.
科目:高中數學 來源: 題型:
【題目】對于由2n個質數組成的集合,可將其元素兩兩搭配成n個乘積,得到一個n元集.若
與
是由此得到的兩個n元集,其中,
,且
,則稱集合對{A ,B}是由M炮制成的一幅“對聯”(如由四元集{a,b,c,d}可炮制成三幅對聯:
.
求六元質數集M={a,b,c,d,e,f}所能炮制成的對聯數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生產基地有五臺機器,現有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述:①甲只能承擔第四項工作;②乙不能承擔第二項工作;③丙可以不承擔第三項工作;④丁可以承擔第三項工作;其中錯誤的是______.
一 | 二 | 三 | 四 | 五 | |
甲 | 15 | 17 | 14 | 17 | 15 |
乙 | 22 | 23 | 21 | 20 | 20 |
丙 | 9 | 13 | 14 | 12 | 10 |
丁 | 7 | 9 | 11 | 9 | 11 |
戊 | 13 | 15 | 14 | 15 | 11 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過
兩點,且圓心
在直線
上.
(1)求圓的方程;
(2)已知過點的直線
與圓
相交截得的弦長為
,求直線
的方程;
(3)已知點,在平面內是否存在異于點
的定點
,對于圓
上的任意動點
,都有
為定值?若存在求出定點
的坐標,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】指數是用體重公斤數除以身高米數的平方得出的數字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當
數值大于或等于20.5時,我們說體重較重,當
數值小于20.5時,我們說體重較輕,身高大于或等于
我們說身高較高,身高小于170cm我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數的數據如散點圖,請根據所得信息,完成下述列聯表,并判斷是否有
的把握認為男生的身高對
指數有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數據如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據最小二乘法的思想與公式求得線性回歸方程為.利用已經求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預報變量(體重)變化的貢獻值(保留兩位有效數字)
;
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數據,需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發現,該組數據的體重應該為.請重新根據最最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,
,
,
,
.
(參考數據)
,
,
,
,
.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將高二(1)班的四個同學分到語文、數學、英語三個興趣小組,每個興趣小組至少有一名同學的分配方法有多少種?下列結論正確的有( )
A.B.
C.D.18
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com