【題目】一個單位有職工80人,其中業務人員56人,管理人員8人,服務人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個容量為10的樣本,每個管理人員被抽到的概率為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為
,b=
.
(1)求橢圓C的標準方程;
(2)F1 , F2分別為橢圓的左、右焦點,A、B為橢圓的左、右頂點,P為橢圓C上的點,求證:以PF2為直徑的圓與以AB為直徑的圓相切;
(3)過左焦點F1作互相垂直的弦MN與GH,判斷MN的中點與GH的中點所在直線l是否過x軸上的定點,如果是,求出定點坐標,如果不是,說出理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,a、b、c分別為∠A,∠B,∠C的對邊,如果a、b、c成等差數列,∠B=30°,△ABC的面積為 ,那么b等于( )
A.
B.1+
C.
D.2+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖像在點
處的切線方程為
.
(1)求實數的值;
(2)設是
的增函數.
(i)求實數的最大值;
(ii)當取最大值時,是否存在點
,使得過點
且與曲線
相交的任意一條直線所圍成的兩個封閉圖形的面積總相等?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以坐標原點
為極點,以
軸的正半軸為極軸建立極坐標系,已知直線
的極坐標方程為
,
.
(Ⅰ)若直線與曲線
交于不同的兩點
,
,當
時,求
的值;
(Ⅱ)當時,求曲線
關于直線
對稱的曲線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點
也是橢圓
:
(
)的一個焦點,
與
的公共弦長為
.
(Ⅰ)求的方程
(Ⅱ)過點的直線
與
相交于
,
兩點,與
相交于
,
兩點,且
,
同向.若
求直線
的斜率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數據的平均值和方差分別為( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com