【題目】某兒童樂園在“六一”兒童節推出了一項趣味活動.參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區域中的數.設兩次記錄的數分別為x,y.獎勵規則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設轉盤質地均勻,四個區域劃分均勻.小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
【答案】(Ⅰ).(Ⅱ)小亮獲得水杯的概率大于獲得飲料的概率.
【解析】
試題(Ⅰ)確定基本事件的概率,利用古典概型的概率公式求小亮獲得玩具的概率;(Ⅱ)求出小亮獲得水杯與獲得飲料的概率,即可得出結論
試題解析:(1)兩次記錄的所有結果為(1,1),(1,,2),(1,3),(1,4),
(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),
(4,1),(4,2),(4,3),(4,4),共16個。
滿足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5個,所以小亮獲得玩具的概率為。…4分
(2) 滿足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6個,所以小亮獲得水杯的概率為;………8分
小亮獲得飲料的概率為,所以小亮獲得水杯的概率大于獲得飲料的概率。…10分
科目:高中數學 來源: 題型:
【題目】如圖是某神奇“黃金數學草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的
,且與舊枝成120°,……,依次生長,直到永遠.
(1)求第3階段“黃金數學草”的高度;
(2)求第13階段“黃金數學草”的高度;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,對于任意的
,都有
, 當
時,
,且
.
( I ) 求的值;
(II) 當時,求函數
的最大值和最小值;
(III) 設函數,判斷函數g(x)最多有幾個零點,并求出此時實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資公司計劃投資,
兩種金融產品,根據市場調查與預測,
產品的利潤
與投資金額
的函數關系為
,
產品的利潤
與投資金額
的函數關系為
.(注:利潤與投資金額單位:萬元)
(1)該公司已有100萬元資金,并全部投入,
兩種產品中,其中
萬元資金投入
產品,試把
,
兩種產品利潤總和表示為
的函數,并寫出定義域;
(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
【答案】(1);(2)20,28.
【解析】
(1)設投入產品
萬元,則投入
產品
萬元,根據題目所給兩個產品利潤的函數關系式,求得兩種產品利潤總和的表達式.(2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.
(1)其中萬元資金投入
產品,則剩余的
(萬元)資金投入
產品,
利潤總和為:
,
(2)因為,
所以由基本不等式得:,
當且僅當時,即:
時獲得最大利潤28萬.
此時投入A產品20萬元,B產品80萬元.
【點睛】
本小題主要考查利用函數求解實際應用問題,考查利用基本不等式求最大值,屬于中檔題.
【題型】解答題
【結束】
20
【題目】已知曲線.
(1)求曲線在處的切線方程;
(2)若曲線在點處的切線與曲線
相切,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求直線和圓
的普通方程;
(2)已知直線上一點
,若直線
與圓
交于不同兩點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com