某開發商用9000萬元在市區購買一塊土地建一幢寫字樓,規劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發費用為y萬元,求函數y=f(x)的表達式;(總開發費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米的平均開發費用最低,該寫字樓應建為多少層?
(1);(2)30.
解析試題分析:(1)經審題,先算出第一層樓的建筑費用,由條件“從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.”可知,各樓層的建筑費用成等差數列,首項為第一層的建筑費用,公差為(萬元),再根據等差數列前
項和公式可得出總開發費用的函數
的表達式;(2)由(1)知每平方米的平均開發費用為
元,構造函數
,并由基本不等式求出函數
的最小值,注意自變量
是正整數.
試題解析:(1)由已知,寫字樓最下面一層的總建筑費用為:(元)
(萬元),
從第二層開始,每層的建筑總費用比其下面一層多:(元)
(萬元),
寫字樓從下到上各層的總建筑費用構成以800為首項,20為公差的等差數列,
所以函數表達式為:. 6分
(2)由(1)知寫字樓每平方米平均開發費用為:(元). 10分
當且僅當時,即
時等號成立.
答:該寫字樓建為30層時,每平方米平均開發費用最低. 12分
考點:1.函數建模;2.基本不等式.
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)時下,網校教學越越受到廣大學生的喜愛,它已經成為學生們課外學習的一種趨勢,假設某網校的套題每日的銷售量(單位:千套)與銷售價格
(單位:元/套)滿足的關系式
,其中
,
為常數.已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求的值;
(2)假設網校的員工工資、辦公等所有開銷折合為每套題2元(只考慮銷售出的套數),試確定銷售價格的值,使網校每日銷售套題所獲得的利潤最大.(保留1位小數)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經市場調查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系;
(2)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,一種醫用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內液體忽略不計.
(1)如果瓶內的藥液恰好分鐘滴完,問每分鐘應滴下多少滴?
(2)在條件(1)下,設輸液開始后(單位:分鐘),瓶內液面與進氣管的距離為
(單位:厘米),已知當
時,
.試將
表示為
的函數.(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若存在實數對(
),使得等式
對定義域中的每一個
都成立,則稱函數
是“(
)型函數”.
(Ⅰ)判斷函數是否為 “(
)型函數”,并說明理由;
(Ⅱ)若函數是“(
)型函數”,求出滿足條件的一組實數對
;,
(Ⅲ)已知函數是“(
)型函數”,對應的實數對
為
.當
時,
,若當
時,都有
,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度
(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過40輛/千米時,車流速度為80千米/小時.研究表明:當
時,車流速度
是車流密度
的一次函數.(1)當
時,求函數
的表達式;
(2)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位: 輛/小時)f
,
可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com