某工廠擬建一座平面圖為矩形且面積為200平方米的三級污水處理池(平面圖如下圖),由于地形限制,長、寬都不能超過16米,如果四周圍池壁建造單價為每米長400元,中間兩道隔墻建造單價為每米長248元,池底建造單價為每平方米80元,池壁的厚度忽略不計.試設計污水池的長和寬,使總造價最低,并求出最低造價.
解 設污水池長為x米,則寬為 下面研究Q(x)在[ 對任意的 即當污水池的長為x=16米,寬為 |
注 實際上,Q(x)=800[(x+ 當x= |
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
某工廠擬建一座平面圖(如下圖)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與污水處理池長x(米)的函數關系式,并指出其定義域.
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com