【題目】如圖,在三棱柱中,
底面
,
,
,
,
是棱
上一點(diǎn).
(I)求證: .
(II)若,
分別是
,
的中點(diǎn),求證:
∥平面
.
(III)若二面角的大小為
,求線段
的長
【答案】(I)見解析(II)見解析(III)
【解析】試題分析:
(1)∵平面
,∴
.又
,所以
面
.從而
(2)欲證線面平行,轉(zhuǎn)證
即可,(3))以
為原點(diǎn),
,
,
分別為
軸,
軸,
軸建立空間直角坐標(biāo)系
.
求出法向量,帶入公式即可.
試題解析:
(I)∵平面
,
面
,
∴.
∵,
,
∴中,
,
∴.
∵,
∴面
.
∵面
,
∴.
(II)連接交
于點(diǎn)
.
∵四邊形是平行四邊形,
∴是
的中點(diǎn).
又∵,
分別是
,
的中點(diǎn),
∴,且
,
∴四邊形是平行四邊形,
∴.
又平面
,
面
,
∴平面
.
(III)∵,且
平面
,
∴,
,
兩兩垂直。
以為原點(diǎn),
,
,
分別為
軸,
軸,
軸建立空間直角坐標(biāo)系
.
設(shè),則
,
,
,
,
∴,
,
.
設(shè)平面的法向量為
,
故,
,
則有,令
,則
,
又平面的法向量為
.
∵二面角的大小為
,
∴,
解得,即
,
,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連接球面上兩點(diǎn)的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4
,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動,有下面四個命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組 所表示的平面區(qū)域為Dn , 記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)皆為整數(shù)的點(diǎn))的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記 ,若對于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n∈N* , 設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項和,a1= 且S2+a2 , S4+a4 , S3+a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{nan}的前n項和為Tn , 求證:對于任意正整數(shù)n, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(k)是滿足不等式log2x+log2(52k﹣1﹣x)≥2k(k∈N*)的自然數(shù)x的個數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雖然吸煙有害健康,但是由于歷史以及社會的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無煙日,且從1989年開始,世界無煙日改為每年的5月31日.某報社記者專門對吸煙的市民做了戒煙方面的調(diào)查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.
(1)從該市吸煙的市民中隨機(jī)抽取3位,求至少有一位煙民愿意戒煙的概率;
(2)從該市吸煙的市民中隨機(jī)抽取4位, 表示愿意戒煙的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
定義在上的函數(shù)
,若
,有
,則稱函數(shù)
為定義在
上的非嚴(yán)格單增函數(shù);若
,有
,則稱函數(shù)
為定義在
上的非嚴(yán)格單減函數(shù).已知:
.
(1)若函數(shù)為定義在
上的非嚴(yán)格單增函數(shù),求實(shí)數(shù)
的取值范圍.
(2)若函數(shù)為定義在
上的非嚴(yán)格單減函數(shù),試解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量 =(
,﹣
),
=(sinx,cosx),x∈(0,
).
(1)若 ⊥
,求tanx的值;
(2)若 與
的夾角為
,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com