【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
【答案】(1)詳見解析;(2)兩者平行,且
.
【解析】
(1)利用平面
,證得
平面
,得到
,利用余弦定理證得
,由此證得
平面
,從而證得平面
平面
.(2)取
的中點
,連接
,通過證明四邊形
為平行四邊形,證得
,同理證得
,所以平面
平面
,由此證得
平面
.利用
求得三棱錐的體積.
(1)證明:因為AA1⊥平面ABC,
所以BB1⊥平面ABC,
因為,
所以AD⊥BB1.
在△ABD中,由余弦定理可得,,
則,
所以AD⊥BC,
又,
所以AD⊥平面BB1C1C,
因為,
所以平面ADB1⊥平面BB1C1C.
(2)解:A1C與平面ADB1平行.
證明如下:取B1C1的中點E,連接DE,CE,A1E,
因為BD=CD,所以DE∥AA1,且DE=AA1,
所以四邊形ADEA1為平行四邊形,
則A1E∥AD.
同理可證CE∥B1D.
因為,
所以平面ADB1∥平面A1CE,
又,
所以A1C∥平面ADB1.
因為AA1∥BB1,
所以,
又,且易證BD⊥平面AA1D,
所以.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和.
(1)求數列{an}的通項公式an;
(2)設數列{bn}的前n項和為Tn,滿足b1=1,.
①求數列{bn}的通項公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差數列,求m+n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓x2+y2=8內有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當α=時,求AB的長;
(2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數是一種反映和評價空氣質量的方法,
指數與空氣質量對應如下表所示:
如圖是某城市2018年12月全月的指數變化統計圖.
根據統計圖判斷,下列結論正確的是( )
A. 整體上看,這個月的空氣質量越來越差
B. 整體上看,前半月的空氣質量好于后半月的空氣質量
C. 從數據看,前半月的方差大于后半月的方差
D. 從數據看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
,
在線段
上,
是線段
的中點,沿
把平面
折起到平面
的位置,使
平面
,則下列命題正確的編號為______.
①二面角的余弦值為
;
②設折起后幾何體的棱的中點
,則
平面
;
③;
④四棱錐的內切球的表面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x3﹣3ax2+1.
(1)若a=﹣1,求函數f(x)的單調區間;
(2)若函數f(x)有且只有2個不同的零點,求實數a的值;
(3)若函數y=|f(x)|在[0,1]上的最小值是0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
是圓
與圓
的公共弦
所在直線方程,且圓
的圓心在直線
上.
(1)求公共弦的長度;
(2)求圓的方程;
(3)過點分別作直線
,
,交圓
于
,
,
,
四點,且
,求四邊形
面積的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學舉辦“父母養育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調查統計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)建立y關于x的回歸方程,并據此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數據:
參考公式:相關系數,若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程
中斜率與截距的最小二乘估計公式分別為
=
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸正半軸為極軸建立極坐標系,
點的極坐標為
,斜率為
的直線
經過點
.
(I)求曲線的普通方程和直線
的參數方程;
(II)設直線與曲線
相交于
,
兩點,求線段
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com