(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當點P變化時,求證:以MN為直徑的圓必過圓O內的一定點。
(Ⅰ);(Ⅱ)設點P的坐標為
, MN的中點坐標為
。
以MN為直徑的圓截x軸的線段長度為
為定值。∴⊙
必過⊙O 內定點
。
解析試題分析:建立直角坐標系,⊙O的方程為,……2分
直線L的方程為。
(Ⅰ)∵∠PAB=30°,∴點P的坐標為,
∴,
。將x=4代入,得
。
∴MN的中點坐標為(4,0),MN=。∴以MN為直徑的圓的方程為
。
同理,當點P在x軸下方時,所求圓的方程仍是。……6分
(Ⅱ)設點P的坐標為,∴
(
),∴
。
∵,將x=4代入,得
,
。∴
,MN=
。
MN的中點坐標為。……10分
以MN為直徑的圓截x軸的線段長度為
為定值。∴⊙
必過⊙O 內定點
。……12分
考點:圓的方程的求法;直線與圓的位置關系;直線方程的點斜式。
點評:要求圓的方程,只需確定圓心和半徑即可。本題的計算量較大,在計算的過程中一定要仔細、認真,避免出現計算錯誤。
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,點
,直線
,設圓
的半徑為1, 圓心在
上.
(1)若圓心也在直線
上,過點
作圓
的切線,求切線方程;
(2)若圓上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
己知圓 直線
.
(1) 求與圓相切, 且與直線
平行的直線
的方程;
(2) 若直線與圓
有公共點,且與直線
垂直,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知關于的方程
:
.
(1)當為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點,且|MN|=
,求
的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點到直線
的距離為
,若存在,求出
的范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)過點Q 作圓C:
的切線,切點為D,且QD=4.
(1)求的值;
(2)設P是圓C上位于第一象限內的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求
的最小值(O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線C1:(
為參數),曲線C2:
(t為參數).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數;
(2)若把C1,C2上各點的縱坐標都拉伸為原來的兩倍,分別得到曲線.寫出
的參數方程.
與
公共點的個數和C
公共點的個數是否相同?說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com