已知直線l:y=kx+2(k為常數(shù))過橢圓+
=1(a>b>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:
的焦距等于
,且過點(diǎn)
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線
斜率的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(其中
為常數(shù))
(1)當(dāng)時(shí),曲線
與曲線
有兩個(gè)交點(diǎn)
.求
的值;
(2)若曲線與曲線
只有一個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為
,且經(jīng)過點(diǎn)
。若分別過橢圓的左右焦點(diǎn)
、
的動(dòng)直線
、
相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率
、
、
、
滿足
.
(1)求橢圓的方程;
(2)是否存在定點(diǎn)M、N,使得為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:
的離心率為
,點(diǎn)
、
,原點(diǎn)
到直線
的距離為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)
在橢圓
上(與
、
均不重合),點(diǎn)
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若雙曲線的離心率等于
,直線
與雙曲線
的右支交于
兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)
是雙曲線
上一點(diǎn),且
,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過拋物線的焦點(diǎn)
作傾斜角為
的直線交拋物線于
、
兩點(diǎn),過點(diǎn)
作拋物線的切線
交
軸于點(diǎn)
,過點(diǎn)
作切線
的垂線交
軸于點(diǎn)
。
(1) 若,求此拋物線與線段
以及線段
所圍成的封閉圖形的面積。
(2) 求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線和橢圓都經(jīng)過點(diǎn),它們在
軸上有共同焦點(diǎn),橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點(diǎn),點(diǎn)
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線與橢圓
交于
,
兩點(diǎn),已知
,
,若
且橢圓的離心率
,又橢圓經(jīng)過點(diǎn)
,
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com