中心在坐標原點,焦點在軸上的橢圓的離心率為
,且經(jīng)過點
。若分別過橢圓的左右焦點
、
的動直線
、
相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率
、
、
、
滿足
.
(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.
(1);
(2)存在點M、N其坐標分別為(0 , -1)、(0, 1),使得為定值
.
解析試題分析:(1)設橢圓方程為,則由題意知
,則
,則橢圓方程為
,代入點
的坐標可得
,所求橢圓方程為
(2)當直線或
斜率不存在時,P點坐標為(-1, 0)或(1, 0).
當直線斜率存在時,設斜率分別為
,
,設
,
,
由得
,∴
,
.
,同理
.∵
, ∴
,即
.又
, ∴
.
設,則
,即
,
由當直線或
斜率不存在時,P點坐標為(-1, 0)或(1, 0)也滿足,∴
點橢圓上,則存在點M、N其坐標分別為(0 , -1)、(0, 1),使得
為定值
.
考點:本題主要考查橢圓的標準方程及幾何性質(zhì),直線與橢圓的位置關系。
點評:中檔題,結(jié)合橢圓的幾何性質(zhì),應用“待定系數(shù)法”求得了橢圓方程。研究直線與圓錐曲線的位置關系,往往應用韋達定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。(II)中對兩直線斜率存在情況進行討論,易于忽視。
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,設點
(
),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 過
、
分別作直線
、
,使
,
.
(1)求動點的軌跡
的方程;
(2)在直線上任取一點
做曲線
的兩條切線,設切點為
、
,求證:直線
恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線
的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,直線
的參數(shù)方程為
(t為參數(shù)),它與曲線
交于A、B兩點。
(1)求的長;
(2)在以為極點,
軸的正半軸為極軸建立極坐標系,設點P的極坐標為
,求點P到線段AB中點M的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的短軸長等于焦距,橢圓C上的點到右焦點
的最短距離為
.
(1)求橢圓C的方程;
(2)過點且斜率為
(
>0)的直線
與C交于
兩點,
是點
關于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:(a>b>0),則稱以原點為圓心,r=
的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線l:y=kx+2(k為常數(shù))過橢圓+
=1(a>b>0)的上頂點B和左焦點F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知兩定點,
,動點
滿足
,由點
向
軸作垂線段
,垂足為
,點
滿足
,點
的軌跡為
.
(1)求曲線的方程;
(2)過點作直線
與曲線
交于
,
兩點,點
滿足
(
為原點),求四邊形
面積的最大值,并求此時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:
,左、右兩個焦點分別為
、
,上頂點
,
為正三角形且周長為6.
(1)求橢圓的標準方程及離心率;
(2)為坐標原點,
是直線
上的一個動點,求
的最小值,并求出此時點
的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com