日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

14.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點(diǎn)到右焦點(diǎn)的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)斜率存在的直線l與橢圓C交于A,B兩點(diǎn),并且滿足以AB為直徑的圓過原點(diǎn),求直線在y軸上截距的取值范圍.

分析 (1)由題意可知:設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),半焦距為c,由題意可知:e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,a+c=3,b2=a2-c2,即可求得a和b的值,即可求得橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為y=kx+m,代入橢圓方程,由△>0 求得3+4k2>m2,由韋達(dá)定理求得x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,由以AB為直徑的圓過原點(diǎn),$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,由向量數(shù)量積的坐標(biāo)表示x1•x2+y1•y2=0,求得7m2=12+12k2,代入即可求得m2>$\frac{3}{4}$,7m2=12+12k2≥12,即可求得截距y軸上截距的取值范圍.

解答 解:(1)由橢圓的焦點(diǎn)在x軸上,則設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),半焦距為c.
由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,
由橢圓C上的點(diǎn)到右焦點(diǎn)的最大距離3,
∴a+c=3,解得:a=2,c=1,
由b2=a2-c2=3,
∴橢圓C的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設(shè)直線l的方程為y=kx+m,
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+8kmx+4m2-12=0,
△=(8km)2-4(3+4k2)(4m2-12)>0,整理得:3+4k2>m2
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
y1•y2=(kx1+m)(kx2+m)=k2x1•x2+km(x1+x2)+m2
以AB為直徑的圓過原點(diǎn),
∴OA⊥OB,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴x1•x2+y1•y2=0,即x1•x2+k2x1•x2+km(x1+x2)+m2=0,
則(1+k2)x1•x2+km(x1+x2)+m2=0,
(1+k2)•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$-km•$\frac{8km}{3+4{k}^{2}}$+m2=0,化簡(jiǎn)得:7m2=12+12k2
將k2=$\frac{7}{12}$m2-1,代入3+4k2>m2,3+4($\frac{7}{12}$m2-1)>m2
解得:m2>$\frac{3}{4}$,
又由7m2=12+12k2≥12,
從而m2≥$\frac{12}{7}$,m≥$\frac{2\sqrt{21}}{7}$或m≤-$\frac{2\sqrt{21}}{7}$.
∴實(shí)m的取值范圍(-∞,-$\frac{2\sqrt{21}}{7}$]∪[$\frac{2\sqrt{21}}{7}$,+∞).

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理及向量數(shù)量積的坐標(biāo)表示,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知f(x)=1-2x,g(x)=x2+3,求f[g(x)]和g[f(x)];
(2)已知f(x)是一次函數(shù),且滿足f[f(x)]=4x-6,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若存在兩個(gè)正實(shí)數(shù)x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是$({-∞,0})∪[{\frac{3}{2e},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=x+\frac{2}{x}$,利用定義證明:
(1)f(x)為奇函數(shù);
(2)f(x)在$[\sqrt{2}$,+∞)上是增加的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(I)求證:AD⊥平面PBE;
(II)若Q是PC的中點(diǎn),求證PA∥平面BDQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.f(x)=xsinx+cosx;
(1)判斷f(x)在區(qū)間(2,3)上的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論(參考數(shù)據(jù):$\sqrt{2}≈1.4,\sqrt{6}$≈2.4)
(2)若存在$x∈({\frac{π}{4},\frac{π}{2}})$,使得f(x)>kx2+cosx成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{a}(x≥0)}\\{|x-2|(x<0)}\end{array}\right.$,且f(-2)=f(2),則f(4)=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,$\overrightarrow a⊥\overrightarrow b$,|$\overrightarrow a|=1$,|$\overrightarrow b|=2$,則|$\overrightarrow c{|^2}$=(  )
A.2B.4C.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列{an}滿足an=4an-1+3,a2=3,則此數(shù)列的第5項(xiàng)是(  )
A.15B.255C.20D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 久久精品视频网 | 亚洲国产精品一区 | 国产精品二区一区二区aⅴ污介绍 | 日韩在线精品 | 一区二区在线看 | 欧美中文在线 | 国产成在线观看免费视频 | 日本在线www | 色婷婷中文字幕 | 久久夜夜操妹子 | av观看在线 | www.com91| 日韩成人在线观看视频 | 国产欧美一区二区在线观看 | 免费在线观看av | 国产美女在线精品免费观看 | 91精品综合久久久久久五月天 | 自拍第一页 | 暖暖日本在线视频 | 欧美高清不卡 | 欧美一级片在线播放 | 麻豆精品国产91久久久久久 | 狠狠干av| 亚洲视频 欧美视频 | 久久毛片 | 国产精品一区二区精品 | 亚洲一区成人在线观看 | 一区二区欧美日韩 | 欧美一区二区三区黄 | www久 | 91视频8mav| 日韩不卡一区二区 | 欧美精品色 | 久久九| 成人a在线视频免费观看 | 久久成人国产精品 | 午夜精品影院 | 亚洲国产精品精华液网站 | 国产精品人成在线播放新网站 | 日韩国产高清在线 | 亚洲综合成人网 |