(12分)已知函數(shù),曲線
在點
處的切線方程為
。
(1)求,
的值;
(2)如果當,且
時,
,求
的取值范圍。
(Ⅰ),
。(Ⅱ)k的取值范圍為(-
,0]
【解析】
試題分析:(1)由函數(shù),曲線
在點
處的切線方程為
,可知f’(1)=-
,f(1)=1,進而得到參數(shù)a,b的值。
(2)構造函數(shù),對于參數(shù)k分類討論得到參數(shù)的取值范圍。
(Ⅰ)
由于直線的斜率為
,且過點
,故
即
解得
,
。
(Ⅱ)由(Ⅰ)知,所以
。
考慮函數(shù),則
。
(i)設,由
知,當
時,
。而
,故
當時,
,可得
;
當x(1,+
)時,h(x)<0,可得
h(x)>0
從而當x>0,且x1時,f(x)-(
+
)>0,即f(x)>
+
.
(ii)設0<k<1.由于當x(1,
)時,(k-1)(x2 +1)+2x>0,故
(x)>0,而
h(1)=0,故當x(1,
)時,h(x)>0,可得
h(x)<0,與題設矛盾。
(iii)設k1.此時
(x)>0,而h(1)=0,故當x
(1,+
)時,h(x)>0,可得
h(x)<0,與題設矛盾。
綜合得,k的取值范圍為(-,0]
考點:本試題主要考查了導數(shù)的幾何意義的運用,以及寒素的最值的運用。
點評:解決該試題的關鍵是利用導數(shù)的幾何意義得到參數(shù)a,b的值,得到解析式。
要證明不等式恒成立,要構造整體的函數(shù),利用導數(shù)判定單調性得到參數(shù)k的范圍。
科目:高中數(shù)學 來源:2011年全國新課標普通高等學校招生統(tǒng)一考試文科數(shù)學 題型:解答題
(本小題滿分12分)
已知函數(shù),曲線
在點
處的切線方程為
,
(1)求的值
(2)證明:當時,
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆浙江省嘉興市高三上學期9月月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),曲線
在點
處的切線是
:
(Ⅰ)求,
的值;
(Ⅱ)若在
上單調遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆浙江省嘉興市高三上學期9月月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),曲線
在點
處的切線是
:
(Ⅰ)求,
的值;
(Ⅱ)若在
上單調遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆四川省成都市六校協(xié)作體高二下期期中聯(lián)考數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),曲線
在點
處的切線方程為
。
(Ⅰ)求、
的值;
(Ⅱ)如果當,且
時,
,求
的取值范圍
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com