日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
6.${({x^3}-\frac{1}{x^2})^5}$展開式中的常數項是-10.

分析 在二項展開式的通項公式:Tr+1=${C}_{5}^{r}$•x15-3r•(-1)r•x-2r=(-1)r•${C}_{5}^{r}$•x15-5r,令x的冪指數等于0,即15-5r=0,求出r的值,即常數項-${C}_{5}^{r}$=-10.

解答 解:由題意可知:${({x^3}-\frac{1}{x^2})^5}$的二項展開式的通項公式為:Tr+1=${C}_{5}^{r}$•x15-3r•(-1)r•x-2r=(-1)r•${C}_{5}^{r}$•x15-5r
令15-5r=0,解得r=3,
故展開式中的常數項為-${C}_{5}^{r}$=-10,
故答案為:-10.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.已知函數$f(x)=\frac{3x}{{\sqrt{-1-x}}}$,其定義域為A.
(1)求A;
(2)求f(-2)的值;
(3)判斷0與A的關系.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.定義新運算a&b為:a&b=$\left\{\begin{array}{l}{a}&{a≤b}\\{b}&{a>b}\end{array}$,則函數f(x)=sinx&cosx 的值域為[-1,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中點,且PA=PB=AB=2,BC=$\sqrt{2}$.
(1)求證:PC∥平面EBD;
(2)求三棱錐A-PBD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知空間兩點的坐標分別為A(1,0,-3),B(4,-2,1),則|AB|=$\sqrt{29}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.如果f[f(x)]=4x+6,且f(x)是遞增函數,則一次函數f(x)=2x+2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=x-alnx,$g(x)=-\frac{a+1}{x}$
(1)若a=1,求函數f(x)在x=e處的切線方程
(2)設函數h(x)=f(x)-g(x),求h(x)的單調區間
(3)若存在x0∈[1,e],(e=2.718…為自然對數的底數),使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖所示,橢圓C:$\frac{{x}^{2}}{4}$+y2=1,左右焦點分別記作F1,F2,過F1,F2分別作直線l1,l2交橢圓AB,CD,且l1∥l2
(1)當直線l1的斜率k1與直線BC的斜率k2都存在時,求證:k1•k2為定值;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設函數f(x)=x-a(x+1)ln(x+1)(a≥0).
(1)求f(x)的單調區間;
(2)當a=1時,若方程f(x)-t=0在[-$\frac{1}{2}$,1]上有兩個實數解,求實數t的取值范圍;
(3)證明:當m>n>0時,(1+m)n<(1+n)m

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 特级黄色毛片 | 一区二区福利 | 一区二区三区精品视频 | 国产精品永久免费 | 欧美成人一区二免费视频软件 | 国产精品美女久久久久图片 | 亚洲xxxxxx | 色综合久久久久 | 国产高清在线 | 欧美激情综合色综合啪啪五月 | 精品国产依人香蕉在线精品 | 99久久精品免费 | 色图一区 | 成人av网址在线观看 | 久久久国产一区二区 | 久久久久成人精品 | 99精品久久久久久久另类 | 黄色在线免费观看视频网站 | 久久国产欧美一区二区三区精品 | 欧美性一区二区三区 | 久久久久久国产免费视网址 | 99热在线精品免费 | 久久久精品影院 | 免费在线看黄 | 日本天堂在线观看 | 一区二区三区视频免费在线观看 | 国产a级毛片 | 天堂久久一区 | 欧美日韩福利 | 国产情品 | 日本亚洲网站 | 日韩欧美精品 | 亚洲综合在线一区 | 国偷自产视频一区二区久 | 亚洲激情视频在线观看 | 超碰首页 | 无码国模国产在线观看 | 中文字幕一区二区三区日韩精品 | 亚洲自拍电影网 | 免费成人av网 | 日韩深夜福利 |