【題目】已知函數(shù)f(x)=(sinx+cosx)2-2cos2x,
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)當(dāng)x∈時(shí),求f(x)的最大值和最小值
【答案】(1) 單調(diào)遞減區(qū)間[π+Kπ,7π/8+Kπ] k∈Z ;(2) f(x)的最大值是
,f(x)的最小值是-1..
【解析】試題分析:(1)先根據(jù)二倍角公式與配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質(zhì)求最小正周期和單調(diào)遞減區(qū)間;(2)先根據(jù)x∈,確定正弦函數(shù)自變量取值范圍,再根據(jù)正弦函數(shù)性質(zhì)求最值
試題解析:由題設(shè)得:f(x)=(sinx+cosx)-2cosx
=1+2sinxcosx-2cosx
=1+sin2x-(1+cos2x)
=sin2x-cos2x=sin(2x-
)
(1)最小正周期T=π,
+2Kπ≤2x-
≤
+2Kπ k∈Z
π+2Kπ≤2x≤
π+2Kπ
π+Kπ≤x≤7π/8+Kπ
單調(diào)遞減區(qū)間[π+Kπ,7π/8+Kπ] k∈Z,
(2)0≤x≤,0≤2x≤π,-
≤2x -
≤π-
=
π
當(dāng)2x - =
即x=
π時(shí),f(x)有最大值
此時(shí)f(x)在[0,π]是增函數(shù),在 [
π,
]是減函數(shù)
所以f(x)的最大值是,f(x)的最小值是-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱為長方體,點(diǎn)
是
上的一點(diǎn).
(1)若為
的中點(diǎn),當(dāng)
為何值時(shí),平面
平面
;
(2)若,
,當(dāng)
時(shí),直線
與平面
所成角的正弦值是否存在最大值?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,過
的直線
交拋物線
于點(diǎn)
,當(dāng)直線
的傾斜角是
時(shí),
的中垂線交
軸于點(diǎn)
.
(1)求的值;
(2)以為直徑的圓交
軸于點(diǎn)
,記劣弧
的長度為
,當(dāng)直線
繞
點(diǎn)旋轉(zhuǎn)時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
和
的參數(shù)方程分別是
(
為參數(shù))和
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓和
的極坐標(biāo)方程;
(Ⅱ)射線:
與圓
交于點(diǎn)
、
,與圓
交于點(diǎn)
、
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,
是曲線
與直線
:
(
)的交點(diǎn)(異于原點(diǎn)
).
(1)寫出,
的直角坐標(biāo)方程;
(2)求過點(diǎn)和直線
垂直的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
=2.71828…為自然數(shù)的底數(shù).
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)當(dāng)時(shí),求證:對(duì)任意的
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(2x-y+1,x+y-2),b=(2,-2).
①當(dāng)x、y為何值時(shí),a與b共線?
②是否存在實(shí)數(shù)x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,函數(shù)
的圖像與函數(shù)
的圖像相切,求
的值;
(2)若,
,函數(shù)
滿足對(duì)任意
,都有
恒成立,求
的取值范圍;
(3)若,函數(shù)
,且
有兩個(gè)極值點(diǎn)
,其中
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為
、
右頂點(diǎn)為
,上頂點(diǎn)為
.已知
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
經(jīng)過點(diǎn)
的直線
與該圓相切于點(diǎn)
求橢圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com