【題目】(本小題共12分)
已知函數(shù),
(
為自然對數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,不等式
恒成立,求實(shí)數(shù)
的值.
【答案】(Ⅰ)當(dāng)時,
在
上為減函數(shù);當(dāng)
時,則
在
上為減函數(shù);在
上為增函數(shù);(Ⅱ)
.
【解析】試題分析:對函數(shù)求導(dǎo),借助導(dǎo)數(shù)研究函數(shù)單調(diào)性,由于,對參數(shù)
進(jìn)行分類討論,根據(jù)
的符號說明函數(shù)的單調(diào)性;由于
,由
,可以求出
,可知:
在
上為減函數(shù);
在
上為增函數(shù); 滿足
,得出結(jié)論.
試題解析:
(Ⅰ) ,令
;
①時,則
(當(dāng)且僅當(dāng)
時取等號)
在
上為減函數(shù);
②當(dāng)時,則
在
上為減函數(shù);
在
上為增函數(shù);
(Ⅱ) ,
由于不等式恒成立,說明
的最小值為
,
當(dāng) 時,
說明
;下面驗證:
當(dāng)時,由(Ⅰ)可知:
在
上為減函數(shù);
在
上為增函數(shù);
當(dāng)
時,
有最小值
,即有
.故
適合題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.y=x﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
(I)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( )
A.y=( )|x|
B.y=x2
C.y=|lnx|
D.y=2﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點(diǎn)B1到平面BDC1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln
)f(ln
),則a,b,c的大小關(guān)系正確的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】⊙O1和⊙O2的極坐標(biāo)方程分別為ρ=4coθ,ρ=﹣sinθ.
(1)把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過⊙O1 , ⊙O2交點(diǎn)的直線的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com