【題目】某大學生在開學季準備銷售一種文具盒進行試創業,在一個開學季內,每售出1盒該產品獲利潤30元,未售出的產品,每盒虧損10元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了160盒該產品,以(單位:盒,
)表示這個開學季內的市場需求量,
(單位:元)表示這個開學季內經銷該產品的利潤.
(1)根據直方圖估計這個開學季內市場需求量的平均數;
(2)將表示為
的函數;
(3)根據直方圖估計利潤不少于4000元的概率.
科目:高中數學 來源: 題型:
【題目】為比較甲、乙兩地某月12時的氣溫狀況,隨機選取該月中的5天,將這5天中12時的氣溫數據(單位:)制成如圖所示的莖葉圖.考慮以下結論:
①甲地的平均氣溫低于乙地的平均氣溫;
②甲地的平均氣溫高于乙地的平均氣溫;
③甲地氣溫的標準差小于乙地氣溫的標準差;
④甲地氣溫的標準差大于乙地氣溫的標準差.
其中根據莖葉圖能得到的統計結論的標號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們常這樣說:“如果你的物理成績好,那么你的數學學習就不會有什么大問題.”某班針對“高中物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系,如表為該班隨機抽取6名學生在一次考試中的物理和數學成績:
學生編號 學科 | 1 | 2 | 3 | 4 | 5 | 6 |
物理成績(x) | 75 | 65 | 75 | 65 | 60 | 80 |
數學成績(y) | 125 | 117 | 110 | 103 | 95 | 110 |
(1)求數學成績y對物理成績x的線性回歸方程;
(2)該班某同學的物理成績100分,預測他的數學成績.
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,
參考數據:752+652+752+652+602+802=29700,
75×125+65×117+75×110+65×103+60×95+80×110=46425.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點.
(1)求證: 平面
;
(2)求平面與平面
所成銳二面角的大;
(3)在線段上是否存在一點
,使直線
與直線
所成的角為
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某經濟開發區規劃要修建一地下停車場,停車場橫截面是如圖所示半橢圓形AMB,其中AP為2百米,BP為4百米,,M為半橢圓上異于A,B的一動點,且
面積最大值為
平方百米,如圖建系.
求出半橢圓弧的方程;
若要將修建地下停車場挖出的土運到指定位置P處,N為運土點,以A,B為出口,要使運土最省工,工程部需要指定一條分界線,請求出分界線所在的曲線方程;
若在半橢圓形停車場的上方修建矩形商場,矩形的一邊CD與AB平行,設
百米,試確定t的值,使商場地面的面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出集合
(1)若求證:函數
(2)由(1)可知,是周期函數且是奇函數,于是張三同學得出兩個命題:
命題甲:集合M中的元素都是周期函數;命題乙:集合M中的元素都是奇函數,請對此給出判斷,如果正確,請證明;如果不正確,請舉出反例;
(3)設為常數,且
求
的充要條件并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間為了規定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:
零件的個數 | ||||
加工的時間 |
(1)在給定的坐標系中畫出表中數據的散點圖;
(2)求出關于
的線性回歸方程
.
(3)試預測加工個零件需要多少時間?
附錄:參考公式: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數是定義在
上的偶函數,當
時,
).
(1)當時,求
的解析式;
(2)若,試判斷
的上單調性,并證明你的結論;
(3)是否存在,使得當
時,
有最大值
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com