【題目】若函數對任意
,都有
,則稱函數
是“以
為界的類斜率函數”.
(1)試判斷函數是否為“以
為界的類斜率函數”;
(2)若實數,且函數
是“以
為界的類斜率函數”,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x3﹣x2+x.
(1)求函數f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知R上的奇函數f(x)和偶函數g(x)滿足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,則f(2)的值為(
A.
B.2
C.
D.a2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代的數學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A. 錢
B. 錢
C. 錢
D. 錢
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻轉90°角,再焊接而成(如圖),問該容器的高為多少時,容器的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
是矩形,
平面
,
是等腰三角形,
,
是
的一個三等分點(靠近點
),
的延長線與
的延長線交于點
,連接
.
(1)求證: ;
(2)求證:在線段上可以分別找到兩點
,
,使得直線
平面
,并分別求出此時
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com