【題目】已知函數f(x)= x3﹣x2+x.
(1)求函數f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調區間.
【答案】
(1)解:f′(x)=x2﹣2x+1≥0,
故f(x)在[﹣1,2]遞增,
f(x)max=f(2)= ,f(x)min=f(﹣1)=﹣
(2)解:g(x)=f(x)﹣4x= x3﹣x2﹣3x,x∈[﹣3,2],
g′(x)=x2﹣2x﹣3=(x﹣3)(x+1),
令g′(x)>0,解得:x<﹣1,令g′(x)<0,解得:x>﹣1,
故g(x)在[﹣3,﹣1]遞增,在[﹣1,2]遞減.
【解析】(1)求出函數的導數,根據函數的單調性求出函數的最值即可;(2)求出函數g(x)的導數,解關于導函數的不等式,求出函數的單調區間即可.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的最大(小)值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠ABC= ,PA⊥底面ABCD,PA=AB=2,M為PA的中點,N為BC的中點
(1)證明:直線MN∥平面PCD;
(2)求異面直線AB與MD所成角的余弦值;
(3)求點B到平面PCD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“a≥3 ”是“直線l:2ax﹣y+2a2=0(a>0)與雙曲線C:
﹣
=1的右支無交點”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數y=f(x)是定義在(0,+∞)上的減函數,并且滿足f(xy)=f(x)+f(y), .
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足an+1+an=4n﹣3(n∈N*)
(Ⅰ)若{an}是等差數列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點D在AB上.
(1)若D是AB中點,求證:AC1∥平面B1CD;
(2)當 =
時,求二面角B﹣CD﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
,其左右焦點為
及
,過點
的直線交橢圓
于
,
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
,
兩點,且
、
、
構成等差數列.
(1)求橢圓的方程;
(2)記的面積為
,
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數對任意
,都有
,則稱函數
是“以
為界的類斜率函數”.
(1)試判斷函數是否為“以
為界的類斜率函數”;
(2)若實數,且函數
是“以
為界的類斜率函數”,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com