【題目】已知函數,且
的解集為
,數列
的前
項和為
,對任意
,都有
(1)求數列的通項公式.
(2)已知數列的前
項和為
,滿足
,
,求數列
的前
項和
.
(3)已知數列,滿足
,若
對任意
恒成立,求實數
的取值范圍.
【答案】(1);(2)
;(3)
或
【解析】
(1)根據根與系數的關系求出,和
,再利用
即可求出數列
的通項公式;
(2)根據,
,可證明
為等比數列,求得
,
,再根據錯位相減法即可求出結果;
(3)由題意可知,可得
,易知當
時,
;當
時,
,當
時,
,進而求出有
的最大值為
,再根據不等式恒成立可列出不等式,解不等式,即可求出結果.
(1)的解集為
,∴
是方程
的兩根
由韋達定理知,解得
,∴
,得
當時,有
當時,有
也符合
,∴
(2)當時,有
,即
,得
當時,有
,可得
,即
,
∴為等比數列,首項為
,公比為2,
∴,∴
.
①,
① 得,
②
①-②得
∴
(3)由題意可知,
則
∴當時,
,即
當時,
,即
,
當時,
,即
,故有
的最大值為
由于對任意
恒成立
則應有,
或
綜上:的取值范圍是:
或
.
科目:高中數學 來源: 題型:
【題目】規定:在桌面上,用母球擊打目標球,使目標球運動,球的位置是指球心的位置,我們說球 A 是指該球的球心點 A.兩球碰撞后,目標球在兩球的球心所確定的直線上運動,目標球的運動方向是指目標球被母球擊打時,母球球心所指向目標球球心的方向.所有的球都簡化為平面上半徑為 1 的圓,且母球與目標球有公共點時,目標球就開始運動,在桌面上建立平面直角坐標系,解決下列問題:
(1) 如圖,設母球 A 的位置為 (0, 0),目標球 B 的位置為 (4, 0),要使目標球 B 向 C(8, -4) 處運動,求母球 A 球心運動的直線方程;
(2)如圖,若母球 A 的位置為 (0, -2),目標球 B 的位置為 (4, 0),能否讓母球 A 擊打目標 B 球后,使目標 B 球向 (8,-4) 處運動?
(3)若 A 的位置為 (0,a) 時,使得母球 A 擊打目標球 B 時,目標球 B(4, 0) 運動方向可以碰到目標球 C(7
,-5
),求 a 的最小值(只需要寫出結果即可)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某電視娛樂節目的游戲活動中,每人需完成A、B、C三個項目.已知選手甲完成A、B、C三個項目的概率分別為、
、
.每個項目之間相互獨立.
(1)選手甲對A、B、C三個項目各做一次,求甲至少完成一個項目的概率.
(2)該活動要求項目A、B 各做兩次,項目C做三次.若兩次項目A均完成,則進行項目B,并獲得積分a;兩次項目B均完成,則進行項目C,并獲積分3a;三次項目C只要兩次成功,則該選手闖關成功并獲積分6a(積分不累計),且每個項目之間互相獨立.用X表示選手甲所獲積分的數值,寫出X的分布列并求數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓
的方程為
,以
為極點,
軸非負半軸為極軸,取相同的長度單位建立極坐標系,直線
的極坐標方程為
.
(1)求直線的直角坐標方程和橢圓
的參數方程;
(2)設為橢圓
上任意一點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將2、3、4、6、8、9、12、15共八個數排成一行,使得任意相鄰兩個數的最大公約數均大于1.則所有可能的排法共有()種
A. 720 B. 1014 C. 576 D. 1296
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某體育公司對最近6個月內的市場占有率進行了統計,結果如表:
(1)可用線性回歸模型擬合與
之間的關系嗎?如果能,請求出
關于
的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購,
兩款車擴大市場,
,
兩款車各100輛的資料如表:
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設每輛車的使用壽命都是整數年,用每輛車使用壽命的頻率作為概率,以每輛車產生利潤的期望值作為決策依據,應選擇采購哪款車型?
參考數據:,
,
,
.
參考公式:相關系數;
回歸直線方程,其中
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com