【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過
個國家或地區(qū)宣布進人緊急狀態(tài),部分國家或地區(qū)直接宣布“封國”或“封城”,隨著國外部分活動進入停擺,全球經(jīng)濟缺乏活力,一些企業(yè)開始倒閉,下表為
年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒閉企業(yè)所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根據(jù)上表,給出兩種回歸模型:
模型①:建立曲線型回歸模型,求得回歸方程為
;
模型②:建立線性回歸模型.
(1)根據(jù)所給的統(tǒng)計量,求模型②中關(guān)于
的回歸方程;
(2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測
年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).
回歸模型 | 模型① | 模型② |
回歸方程 | ||
參考公式:,
;
.
參考數(shù)據(jù):,
,
,
,
,
.
科目:高中數(shù)學 來源: 題型:
【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為
,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DE與AB所成的角約為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是
的導(dǎo)函數(shù),討論
的單調(diào)性;
(2)若(
是自然對數(shù)的底數(shù)),求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在疫情這一特殊時期,教育行政部門部署了“停課不停學”的行動,全力幫助學生在線學習.復(fù)課后進行了摸底考試,某校數(shù)學教師為了調(diào)查高三學生這次摸底考試的數(shù)學成績與在線學習數(shù)學時長之間的相關(guān)關(guān)系,對在校高三學生隨機抽取45名進行調(diào)查.知道其中有25人每天在線學習數(shù)學的時長是不超過1小時的,得到了如下的等高條形圖:
(1)是否有的把握認為“高三學生的這次摸底考試數(shù)學成績與其在線學習時長有關(guān)”;
(2)將頻率視為概率,從全校高三學生這次數(shù)學成績超過120分的學生中隨機抽取10人,求抽取的10人中每天在線學習時長超過1小時的人數(shù)的數(shù)學期望與方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與拋物線
有共同的焦點
,且兩曲線的公共點到
的距離是它到直線
(點
在此直線右側(cè))的距離的一半.
(1)求橢圓的方程;
(2)設(shè)為坐標原點,直線
過點
且與橢圓交于
兩點,以
為鄰邊作平行四邊形
.是否存在直線
,使點
落在橢圓
或拋物線
上?若存在,求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,直線
不過原點
且不平行于坐標軸,
與
有兩個交點
,
,線段
的中點為
.
(1)若,點
在橢圓
上,
、
分別為橢圓的兩個焦點,求
的范圍;
(2)若過點
,射線
與橢圓
交于點
,四邊形
能否為平行四邊形?若能,求此時直線
斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在中,
,
,
,
分別為
,
的中點
是由
繞直線
旋轉(zhuǎn)得到,連結(jié)
,
,
.
(1)證明:平面
;
(2)若,棱
上是否存在一點
,使得
?若存在,確定點
的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com