【題目】已知,直線
不過原點(diǎn)
且不平行于坐標(biāo)軸,
與
有兩個(gè)交點(diǎn)
,
,線段
的中點(diǎn)為
.
(1)若,點(diǎn)
在橢圓
上,
、
分別為橢圓的兩個(gè)焦點(diǎn),求
的范圍;
(2)若過點(diǎn)
,射線
與橢圓
交于點(diǎn)
,四邊形
能否為平行四邊形?若能,求此時(shí)直線
斜率;若不能,說明理由.
【答案】(1);(2)
.
【解析】
(1)求得焦點(diǎn)坐標(biāo),設(shè),運(yùn)用向量數(shù)量積的坐標(biāo)表示,結(jié)合橢圓的范圍,可得所求范圍;
(2)設(shè),
的坐標(biāo)分別為
,
,
,
,運(yùn)用中點(diǎn)坐標(biāo)公式和點(diǎn)差法,直線的斜率公式,結(jié)合平行四邊形的性質(zhì),即可得到所求斜率.
解:(1)時(shí),橢圓
,兩個(gè)焦點(diǎn)
,
,
,
,
設(shè),可得
,即
,
,
,
,
,
,
因?yàn)?/span>,
所以的范圍是
;
(2)設(shè),
的坐標(biāo)分別為
,
,
,
,可得
,
,
則,兩式相減可得
,
,即
,
故,又設(shè)
,
,直線
,
即直線的方程為
,
從而,代入橢圓方程可得,
,
由與
,聯(lián)立得
,
若四邊形為平行四邊形,那么
也是
的中點(diǎn),
所以,即
,整理可得
,
解得,經(jīng)檢驗(yàn)滿足題意,
所以當(dāng)時(shí),四邊形
為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國數(shù)學(xué)家龐加是個(gè)喜歡吃面包的人,他每天都會(huì)購買一個(gè)面包,面包師聲稱自己出售的每個(gè)面包的平均質(zhì)量是1000,上下浮動(dòng)不超過50
.這句話用數(shù)學(xué)語言來表達(dá)就是:每個(gè)面包的質(zhì)量服從期望為1000
,標(biāo)準(zhǔn)差為50
的正態(tài)分布.
(1)假設(shè)面包師的說法是真實(shí)的,從面包師出售的面包中任取兩個(gè),記取出的兩個(gè)面包中質(zhì)量大于1000的個(gè)數(shù)為
,求
的分布列和數(shù)學(xué)期望;
(2)作為一個(gè)善于思考的數(shù)學(xué)家,龐加萊每天都會(huì)將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計(jì)算25個(gè)面包總質(zhì)量為24468.龐加萊購買的25個(gè)面包質(zhì)量的統(tǒng)計(jì)數(shù)據(jù)(單位:
)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
盡管上述數(shù)據(jù)都落在上,但龐加菜還是認(rèn)為面包師撒謊,根據(jù)所附信息,從概率角度說明理由
附:
①若,從X的取值中隨機(jī)抽取25個(gè)數(shù)據(jù),記這25個(gè)數(shù)據(jù)的平均值為Y,則由統(tǒng)計(jì)學(xué)知識(shí)可知:隨機(jī)變量
②若,則
,
,
;
③通常把發(fā)生概率在0.05以下的事件稱為小概率事件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過
個(gè)國家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國家或地區(qū)直接宣布“封國”或“封城”,隨著國外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為
年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒閉企業(yè)所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根據(jù)上表,給出兩種回歸模型:
模型①:建立曲線型回歸模型,求得回歸方程為
;
模型②:建立線性回歸模型.
(1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于
的回歸方程;
(2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)
年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).
回歸模型 | 模型① | 模型② |
回歸方程 | ||
參考公式:,
;
.
參考數(shù)據(jù):,
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的兩個(gè)焦點(diǎn)分別是
,直線
:
與橢圓交于
兩點(diǎn).
(1)若為橢圓短軸上的一個(gè)頂點(diǎn),且
是直角三角形,求
的值;
(2)若,且
,求證:
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和
的直角坐標(biāo)方程;
(2)已知曲線的極坐標(biāo)方程為
,點(diǎn)
是曲線
與
的交點(diǎn),點(diǎn)
是曲線
與
的交點(diǎn),
、
均異于原點(diǎn)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡(jiǎn)稱BMI)是衡量人體胖瘦程度的一個(gè)標(biāo)準(zhǔn),BMI=體重(kg)/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI≥28時(shí)為肥胖.某地區(qū)隨機(jī)調(diào)查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:
(1)求被調(diào)查者中肥胖人群的BMI平均值;
(2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計(jì) | |
高血壓 | |||
非高血壓 | |||
合計(jì) |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,斜率為
的直線
交拋物線
于
,
兩點(diǎn),當(dāng)直線
過點(diǎn)
時(shí),以
為直徑的圓與直線
相切.
(1)求拋物線的方程;
(2)與平行的直線
交拋物線于
,
兩點(diǎn),若平行線
,
之間的距離為
,且
的面積是
面積的
倍(O為坐標(biāo)原點(diǎn)),求
和
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B分別為橢圓E:(a>1)的左、右頂點(diǎn),G為E的上頂點(diǎn),
,P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交點(diǎn)為D.
(1)求E的方程;
(2)證明:直線CD過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com