日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
1
0
-1
x>0
x=0
x<0
,若g(x)=(x-1)2f(x-1),y=g(x)的反函數y=g-1(x),則g(-1)•g-1(-4)的值為
 
分析:欲求g(-1)•g-1(-4)的值,先分別求得g(-1)和g-1(-4)的值,利用g(x)=(x-1)2f(x-1),可直接求得g(-1),利用y=g(x)的反函數y=g-1(x),可求出g-1(-4),從而解決問題.
解答:解:由題意得:
g(-1)=(-1-1)2f(-1-1)=4×(-1)=-4,
又設g(x)=(x-1)2f(x-1)=-4,得:
(x-1)2=4,(x-1<0)?x=-1,
y=g(x)的反函數y=g-1(x),
∴g-1(-4)=-1,
則g(-1)•g-1(-4)的值為(-4)×(-1)=4.
故答案為:4.
點評:本小題主要考查反函數、不等式的解法等基礎知識,考查運算求解能力,考查轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
x2+1  (x≥0)
-2x    (x<0)
,那么f-1(10)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•深圳二模)設函數f(x)=sinωx+sin(ωx-
π
2
)
,x∈R.
(1)若ω=
1
2
,求f(x)的最大值及相應的x的集合;
(2)若x=
π
8
是f(x)的一個零點,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中:
①函數f(x)=
1
lgx
在(0,+∞)
是減函數;
②在平面上,到定點(2,-1)的距離與到定直線3x-4y-10=0距離相等的點的軌跡是拋物線;
③設函數f(x)=cos(
3
x+
π
6
)
,則f(x)+f'(x)是奇函數;
④雙曲線
x2
25
-
y2
16
=1
的一個焦點到漸近線的距離是5;
其中正確命題的序號是

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)=
1
0
-1
x>0
x=0
x<0
,若g(x)=(x-1)2f(x-1),y=g(x)的反函數y=g-1(x),則g(-1)•g-1(-4)的值為______.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区免费 | 日日av拍夜夜添久久免费 | 色涩涩| 国产成人精品在线观看 | 欧日韩在线观看视频 | 色视频网站在线观看 | 日韩一区二区中文字幕 | 精品国产一区二区三区久久久蜜月 | 九九九久久国产免费 | 亚洲成人中文字幕 | 狠狠av| 日本一区二区高清不卡 | 嫩草网站在线观看 | 国产第一亚洲 | 麻豆专区一区二区三区四区五区 | 亚洲视频免费在线 | 亚洲欧美日韩精品 | 日韩欧美一区二区三区久久婷婷 | 久久国产成人午夜av影院宅 | 日本黄色大片免费 | 欧美日韩不卡合集视频 | 男人的天堂免费 | 久久亚洲精品中文字幕 | 久久精品在线 | 一区在线不卡 | 久久综合一区二区 | 一区二区影院 | 日韩成人精品 | 亚洲成人二区 | 精品综合 | 日本性视频 | 日本在线观看一区二区三区 | 在线观看国产 | 亚洲精品电影在线观看 | 一级免费毛片 | 欧美二三区 | 一本大道综合伊人精品热热 | 欧美中文字幕一区 | 国产一级黄色大片 | 精品国产一区二区三区日日嗨 | 在线日韩|