【題目】根據某電子商務平臺的調查統計顯示,參與調查的1000位上網購物者的年齡情況如圖.
(1)已知、
,
三個年齡段的上網購物者人數成等差數列,求
,
的值;
(2)該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發放代金券,高消費人群每人發放50元的代金券,潛在消費人群每人發放80元的代金券.已經采用分層抽樣的方式從參與調查的1000位上網購物者中抽取了10人,現在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和
的分布列與數學期望.
【答案】(1),
;(2)分布列見解析,數學期望
.
【解析】
試題分析:(1)根據頻率分布直方圖可有,所以
,又根據等差中項有
,所以解得
,
;(2)根據頻率分布直方圖可知高消費人群與潛在消費人群的頻率之比為
,所以根據分層抽樣的性質可知,應從高消費人群中抽取
人,潛在消費人群中抽取
人,現從這
人抽取
人進行回訪,分析可知三人獲得代金券總和
的所有可能取值為
,
,
,
,對應的概率分別為
,
,
,
,于是可以求出分布列和數學期望.
試題解析:(1)由于五個組的頻率之和等于1,故:
,且
,
聯立解出,
.
(2)由已知高消費人群所占比例為,潛在消費人群的比例為0.4,由分層抽樣的性質知抽出的10人中,高消費人群有6人,潛在消費人群有4人,隨機抽取的三人中代金券總和
可能的取值為:240,210,180,150.
,
,
,
,
列表如下:
240 | 210 | 180 | 150 | |
數學期望.
科目:高中數學 來源: 題型:
【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數;
(2)若在這10個賣場中,乙型號電視機銷售量的平均數為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據莖葉圖推斷b為何值時,
達到最值.
(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關于行駛速度
(千米/小時)的函數解析式可以表示為:
,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校90名專職教師的年齡狀況如下表:
年齡 | 35歲以下 | 35~50歲 | 50歲以上 |
人數 | 45 | 30 | 15 |
現擬采用分層抽樣的方法從這90名專職教師中抽取6名老、中、青教師下鄉支教一年.
(Ⅰ)求從表中三個年齡段中分別抽取的人數;
(Ⅱ)若從抽取的6個教師中再隨機抽取2名到相對更加邊遠的鄉村支教,計算這兩名教師至少有一個年齡是35~50歲教師的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
,
).
(1)若的部分圖像如圖所示,求
的解析式;
(2)在(1)的條件下,求最小正實數,使得函數
的圖象向左平移
個單位后所對應的函數是偶函數;
(3)若在
上是單調遞增函數,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,且
在
上單調遞增,求實數
的取值范圍;
(2)是否存在實數,使得函數
在
上的最小值為1?若存在,求出實數
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以直角坐標系原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的極坐標方程,并說明其表示什么軌跡;
(2)若直線的極坐標方程為,求直線被曲線
截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數為4的3件日用品記為,等級系數為5的2件日用品記為
,現從
,
這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數恰好相等的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)求證:曲線在點
處的切線過定點;
(2)若是
在區間
上的極大值,但不是最大值,求實數
的取值范圍;
(3)求證:對任意給定的正數 ,總存在
,使得
在
上為單調函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com